A look at future exposures, through a 19th century lens
Can a centenarian maths idea speed up the calculation of forward sensitivities?
The calculation of forward sensitivities is a relatively unexplored area of derivatives research. That is partly because it isn’t strictly required, but chiefly due to the computational load, which can only be handled with mathematical techniques based on adjoint algorithmic differentiation (AAD).
At least so far. This very contemporary problem has now been tackled using so-called Chebyshev tensors, an idea dating back to the nineteenth century.
In their paper, Tensoring dynamic sensitivities and dynamic initial margin, Mariano Zeron and Ignacio Ruiz argue the technique can yield results comparable to AAD.
“What we propose in the paper is an easy-to-implement method to accurately and efficiently simulate forward sensitivities. We are not aware of anyone doing so outside of an AAD implementation,” says Ruiz.
An efficient technique for calculating forward sensitivities opens the way to several valuable applications, such as the computation of forward value-at-risk and margin valuation adjustments. The simulation of forward market risk and counterparty risk capital, which are currently not even considered, may also be possible with Chebyshev tensors.
The paper singles out one application in particular, the computation of dynamic initial margin, as a prime example of what can be achieved when the technique is applied to foreign exchange swaps and European spread options.
Chebyshev tensors are used to replicate functions – in this case, sensitivities – with polynomials. They work by interpolating a parsimonious number of points, the roots of the so-called Chebyshev polynomials, to approximate the given function, provided this holds certain properties.
The Chebyshev polynomials were discovered by the Russian mathematician Pafnuty Chebyshev more than a hundred years ago. Back then, in the pre-electricity era, Chebyshev’s discovery had no obvious practical applications.
“The interest at the time was purely theoretical and directed at finding whether continuous functions could be approximated by polynomials” says Zeron. “This and other numerical techniques developed at the end of the 19th century got lost and, because of the unfair bad reputation of polynomial interpolation methods, they have not resurfaced until very recently.”
What we propose in the paper is an easy-to-implement method to accurately and efficiently simulate forward sensitivities. We are not aware of anyone doing so outside of an AAD implementation
Ignacio Ruiz, MoCaX Intelligence
Zeron and Ruiz have spent about six years developing their approach at MoCaX Intelligence, a consultancy specialising in risk engine analytics. They say one of the advantages of using Chebyshev tensors is that it does not require an overhaul of banks’ data structure and model libraries.
“To implement AAD one needs to redevelop the whole pricing engine. It’s very challenging to run it on an existing infrastructure that has not been set up specifically for AAD,” says Ruiz. “Chebyshev tensors can be applied easily on existing risk engines and the performance is in practice comparable in terms of accuracy and computations cost.”
“It is a very simple technique,” adds Zeron. “Conceptually, understanding what ones needs to do is straightforward. The difficulty of implementing it within an existing risk system depends on the set-up of the engine.”
So, are Chebyshev tensors set to take centre stage in sensitivities computation? Not so fast, says Brian Huge, chief analyst at Danske Bank, who recently proposed a solution to this problem with his colleague Antoine Savine that combines AAD and neural networks.
Huge acknowledges that the rediscovery of old theories such as Chebyshev tensors can lead to new solutions to modern-day problems.
“The Chebyshev interpolation is a very interesting mathematical instrument,” he says. “When the interpolating points are placed in an optimal way, the approximation can be really good.”
But he is not yet sold on its use for the computation of forward sensitivities.
“The authors use a smart technique to reduce the dimensionality of the problem. But despite that, I’m still sceptical that the idea can be used for this particular purpose, because the computation times are not yet satisfactory.”
Zeron and Ruiz are adamant their tests prove the technique is ready to be put into production. It shouldn’t take another century to find out if they’re right.
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら 我々の見解
粘着性のあるインフレに対する懸念がくすぶり続けている
Risk.netの調査によると、投資家たちはインフレの終息を宣言する準備がまだ整っていないことが判明しましたが、それには十分な理由があります。
トランプ流の世界がトレンドにとって良い理由
トランプ氏の政策転換はリターンに打撃を与えました。しかし、彼を大統領の座に押し上げた勢力が、この投資戦略を再び活性化させる可能性があります。
Roll over, SRTs: Regulators fret over capital relief trades
Banks will have to balance the appeal of capital relief against the risk of a market shutdown
オムニバス(法案)の下に投げる:GARはEUの環境規制後退を乗り切れるのか?
停止措置でEU主要銀行の90%が報告を放棄で、グリーンファイナンス指標が宙ぶらりんな状態に
コリンズ修正条項はエンドゲームを迎えたのでしょうか?
スコット・ベッセント氏は、デュアル・キャピタル・スタックを終わらせたいと考えています。それが実際にどのように機能するかは、まだ不明です。
トーキング・ヘッズ2025:トランプ氏の大きな美しい債券を購入するのは誰でしょうか?
国債発行とヘッジファンドのリスクが、マクロ経済の重鎮たちを悩ませています。
AIの説明可能性に関する障壁は低くなってきている
改良され、使いやすいツールは、複雑なモデルを素早く理解するのに役立ちます。
BISの取引高はトレンドを大きく上回っているのか
最新の3年ごとの調査において、外国為替市場の日次平均取引高は9.6兆ドルに急増しましたが、これらの数値は代表的なものと言えるでしょうか。