Humans struggle to keep pace with machine learning
Banks and regulators grapple with ‘XAI’ challenge
The financial crisis revealed a few harsh truths to the quantitative finance profession – not least the folly of believing that modelling assumptions will hold true in all market circumstances.
A decade on, the models banks use to power everything from loan decisions to economic forecasting are subject to far more rigorous regulatory scrutiny. For the past several years, the parameters that underpin models, the purpose they’re put to and the governance applied to them have been subject to strict criteria from prudential authorities, forcing banks to implement validation frameworks to cope with the tougher compliance expectations.
But rapid investment in one area of quant research – machine learning – has left banks with a growing number of models that don’t easily fit into the above mould. Models that rely on ML techniques to determine their outputs, particularly more complex deep learning approaches, often defy easy explanation – posing banks a problem when regulators ask them to show their workings.
This problem is cropping up with increasing frequency in banking, but it is not new: practitioners grappling with it in other industries – doctors using image recognition technology to spot tumours, or military leaders developing drones that can spot targets hidden behind layers of defences – have given the field its own, slightly awkward acronym: XAI, or explainable artificial intelligence.
All acknowledge, to varying degrees, that a failure to justify their models’ conclusions will erode trust in their approaches, and ultimately curb the widespread use of such methods in future – even where they offer potentially huge advantages.
It’s the same in banking. Unsurprisingly, regulators are already probing how banks use ML models, even where they only intend to deploy them as challengers for validation purposes – let alone active use.
Models with client-facing applications will not be alone in attracting scrutiny: it would reflect badly on a bank if its chief reporting officer couldn’t explain how the firm’s new ML-based anti-money laundering software verified the source of client funds in response to a regulator’s spot-check.
Banks are clear, however, that the direction of travel on ML research and deployment is only going to run one way – and unequivocal that regulators will have to keep up.
One senior risk manager at a large bank argues watchdogs must invest time and resources in training model validators to understand the rudiments of more complex ML techniques, akin to how banks themselves previously laid on seminars to educate regulators on the quantitative techniques underlying capital models imposed under the original Basel accords, which increased banks’ freedom to model their capital requirements.
Should regulators fail to keep pace with ML model development, he implies, they will be standing in the way of progress.
“Regulators will have to go on the same journey they did 20 years ago on quant models in the primary risk space. They will have to learn, they will have to invest and they will have to deal with it.”
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら 我々の見解
ファニーメイとフレディマックによる住宅ローン買い入れが金利上昇を招く可能性は低い
9兆ドル規模の市場において2,000億ドルのMBSを追加しても、従来のヘッジ戦略を復活させることはできません。
2025年の影響度合い:デリバティブ価格設定が主導的役割を担い、クオンツはAIの群れに追随しない
金利とボラティリティのモデリング、ならびに取引執行は、クオンツの優先事項の最上位に位置しております。
株式には、投資家が見落としている可能性のある「賭け要素」が存在する
投機的取引は、対象となる株式によって異なる形で、暗号資産と株式市場との間に連動関係を生み出します。
パッシブ投資とビッグテック:相性の悪い組み合わせ
トラッカーファンドがアクティブ運用会社を締め出し、ごく少数の株式に対して過熱した評価をもたらしています。
粘着性のあるインフレに対する懸念がくすぶり続けている
Risk.netの調査によると、投資家たちはインフレの終息を宣言する準備がまだ整っていないことが判明しましたが、それには十分な理由があります。
トランプ流の世界がトレンドにとって良い理由
トランプ氏の政策転換はリターンに打撃を与えました。しかし、彼を大統領の座に押し上げた勢力が、この投資戦略を再び活性化させる可能性があります。
Roll over, SRTs: Regulators fret over capital relief trades
Banks will have to balance the appeal of capital relief against the risk of a market shutdown
オムニバス(法案)の下に投げる:GARはEUの環境規制後退を乗り切れるのか?
停止措置でEU主要銀行の90%が報告を放棄で、グリーンファイナンス指標が宙ぶらりんな状態に