How to model potential exposure, post-Archegos
BofA quant’s model considers the correlation between market shocks and counterparty defaults
As modelling errors go, Credit Suisse’s miscalculation of its credit exposure to Archegos Capital Management might take the biscuit. The bank estimated its potential exposure at around $550 million just days before suffering a $5.5 billion loss.
Archegos was an extreme case, but forecasting errors of this type are all too common. In recent years, the defaults of several highly levered investors – including hedge fund Malachite Capital Management and commodity trader Einar Aas – have left banks and central counterparties with surprisingly large losses.
Andrew Dickinson, a director in the quant strategy and data group at Bank of America, argues the standard approaches used by banks to model their exposure to levered counterparties fail to adequately capture the correlation between market jumps – the sort of violent price moves that generate chunky margin calls – and the probability of default.
“Classical models like conditionally independent default models may link the chances of a counterparty default with what happens in the market, but they do so in a milder fashion”, he says. “They don’t fully capture the sort of coalescence of adverse events when it comes to both extreme gaps in the market and the counterparty defaulting on the same day.”
Approaches such as jump-to-default models don’t explicitly tie the probability of default to market gaps. Dickinson’s latest paper describes a model for calculating potential exposure – a common measure of counterparty risk that provides a reasonable estimate of worst-case losses in a default – that takes this correlation into account.
“The model needs to capture the possibility of jumps – not just normal jumps, but also fat-tail jumps – and the chances of a material jump occurring needs to be realistic,” he says. “Then it needs to capture meaningfully the possibility of counterparties defaulting due to the variation margin call.”
The model needs to capture the possibility of jumps – not just normal jumps, but also fat-tail jumps – and the chances of a material jump occurring needs to be realistic
Andrew Dickinson, Bank of America
The latter piece brings up the thorny question of wrong-way risk. “The counterparty may be using some of their assets as collateral – as protection against default,” notes Chris Kenyon, head of quant innovation and derivatives valuation adjustment (XVA) modelling at MUFG. In such cases, when the assets decline in value, the bank is more exposed and less protected.
Dickinson uses orthodox inputs – probability of default, recovery rate and expected exposure – to model these dynamics. He then uses a t-distribution to capture fat tails and Lévy processes to replicate market gaps. But the key ingredient that distinguishes this model from classical approaches is the introduction of a correlation parameter that links market gaps to default intensity. The parameter ranges from zero to one – when it equals zero, the model reduces to a classical form, but as it moves towards one, the model signals an increasing frequency of market gaps and coincident defaults.
When the correlation parameter is close to one, a severe but plausible decline in the value of a counterparty’s portfolio is likely to trigger a default. In such scenarios, banks should limit exposures and ensure they have collected enough initial margin to absorb losses.
“If a counterparty has 1 billion dollars of liquid capital, a broker-dealer should make sure their portfolio is limited in size so that the counterparty would lose at most 1 billion dollars over initial margin under a severe but plausible scenario,” says Dickinson.
If the model is widely adopted, highly levered counterparties would have to demonstrate that they are sufficiently capitalised to withstand a severe but plausible market gap in order to do business with banks. It is hard to see how Archegos could have passed that test in the months and weeks leading up to its collapse.
That, of course, assumes that banks are able to get reliable data on counterparty positions – as Archegos’s counterparties rapidly discovered in the advent of the fund’s demise.
“The limiting factor is actually knowing what assets your counterparty has,” says Kenyon. The model provides useful and reliable information, he says, “only if you could have gotten the calibration data”.
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら ビュー
クオンツキャスト・マスターズ・シリーズ:ナム・キフン(モナシュ大学)
メルボルン拠点のプログラムが年金基金業界に目を向ける
クオンツキャスト・マスターズ・シリーズ:ペッター・コルム(クーラント研究所)
ニューヨーク大学のプログラムは、ほぼ専ら金融業界のエリート実務家の方々によって指導されております。
クオンツになりたい?採用される方法(そして採用されない方法)をご紹介しましょう
好奇心を保て、チームプレーを心がけ、適切な言葉遣いにも気を付けましょう。そして、驕らないようにしましょう。
クオンツキャスト・マスターズ・シリーズ:ローラ・バロッタ(ベイズ・ビジネススクール)
ビジネススクールでは、実践的な知識の教授を最優先とし、現実社会を鋭い視点で捉えています。
未来のクオンツにとって、Pythonは必須ですが、AIは必須ではありません。
定量分析チームの博士号取得者の割合は低下傾向にあります。これは雇用主が総合的なスキルを重視しているためです。
ポッドキャスト:ファイナンスネイティブニューラルネットワークについてイアビチーノが語る
UBSのクオンツが、金融の法則をAIフレームワークに組み込む方法を解説します
クオンツキャスト マスターズ・シリーズ:ダン・ステファニカ氏とジム・ガセラ氏
バルーク・カレッジの指導者たちが、トップランクのクオンツ・ファイナンス修士課程をどのように運営しているかについて
未来のクオンツ:次世代モデラーになるために必要なものとは
雇用主はハードスキルとソフトスキルの両方を兼ね備えた人材をますます重視していることが、Risk.netの調査で明らかになりました。