Backtesting expected shortfall: mission accomplished?
A rigorous backtest for ES cannot exist, but a good approximation might do the job
The debate on the backtestability of expected shortfall (ES) is almost as old as the risk measure itself. Despite warnings from prominent quants that the measure was unsuitable because no backtest existed, the Basel Committee chose to adopt it as the standard measure for the calculation of market risk capital requirements – prompting numerous research projects dedicated to validating its performance.
ES has long lived in the shadow of value-at-risk, a measure that in itself provides the risk manager with information of questionable usefulness. Its advantage is that it is very easy to backtest: to verify if VAR has been estimated correctly, it is sufficient to compare the series of realised returns and that of daily VAR estimates. If the number of returns violates the threshold set by the VAR’s confidence level, then the backtest has failed and VAR needs to be recalibrated.
With ES, however, it is not so simple. ES represents the average risk in the tail of the distribution. Intuitively, validating a measure of risk by comparing it to realised returns is like comparing apples to oranges: the first is a function of a probability distribution, while the second is a single realisation from that distribution. On more rigorous grounds, it was proved by Tilmann Gneiting in 2011 that ES is, strictly speaking, not backtestable. This is because it lacks a mathematical property called elicitability, which is necessary in order for any risk measure to submit to a rigorous backtest.
Also, because ES by definition relies on VAR predictions, its own accuracy and the reliability of its backtest are inevitably sensitive to the accuracy of VAR predictions. Incorrect VAR estimates may potentially lead to excessively prudential ES values and consequent suboptimal allocation of capital, or, worse, losses of unexpected frequency or magnitude.
Any validation test on ES therefore needs to have some degree of approximation. Because large biases in VAR entail higher capital charges for the banks, it is crucial to minimise such biases. An idea on how to achieve such minimisation comes from the latest work of Carlo Acerbi, head of valuation and quantitative solutions at Banque Pictet, and Balazs Szekely, an economic adviser at the Central Bank of Hungary.
“You can never write a test that is exclusively testing ES; you are always testing ES and VAR,” explained Acerbi, in a podcast with Risk.net to discuss his research. “A test for ES is perfect only if the VAR prediction is perfect,” he added.
Acerbi and Szekely’s test is a function of both ES and VAR predictions. The backtest is possible thanks to the introduction of the so-called realised ES, which is an unobservable quantity but is clearly defined by the authors in their paper as a function of VAR predictions.
Its attractiveness lies in the fact that it allows the user to compare quantities of the same kind: forecast and realised ES. Interestingly, such a test not only provides an answer to whether the ES model is accepted or rejected, but it also gives the difference between the expected and the realised ES, giving a precise measure of the error. This allows a bank to adjust its risk models accordingly.
The authors derive the explicit formula for that difference, or bias, and find that it is always positive. That means capital charges can be overestimated, but not underestimated – a welcome prudential feature. From that formula, it can also be observed that bias is conveniently small.
As part of the explanation of their method, the authors introduce the concept of sharpness of backtests. A test is ‘sharp’ if its expectation function only depends on forecast values and realised values of the statistic being backtested. Their backtest complies with such a criterion.
The desirable properties of this technique come with a cost, albeit a manageable one. Its implementation is not as straightforward as that of VAR backtests, where it is sufficient to collect two data points per interval and count if the violations are within the boundary of acceptability.
When backtesting ES, it is necessary to collect the daily forecast of the entire distribution of the tail. The distribution can be described by a parametric model, which means one must have associated the tail with a specific family of statistical distribution (for example Gaussian, or Student-t or chi-square) and its statistical moments. A more computationally intensive alternative is to describe the tail with its historical distribution and resample it to generate the forecast.
Acerbi and Szekely’s method is currently being examined by the risk team of the Bank of Italy, where the risk measure is currently being applied to the central bank’s own portfolio. Marco Orlandi is part of a team of three within the financial risk control function of the central bank, working on finding a reliable backtest for expected shortfall.
“Our feedback on their backtest is so far very positive,” says Orlandi. “We hope to be able to show the results internally by the end of the year,” adding that it will likely be part of an approximately annual procedure to assess their risk methodologies.
Acerbi and Szekely are optimistic about the possible applications of their solutions, which, beyond the backtesting of capital models, could include rule-based margins, risk budgeting or stop-risk rules.
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら 我々の見解
粘着性のあるインフレに対する懸念がくすぶり続けている
Risk.netの調査によると、投資家たちはインフレの終息を宣言する準備がまだ整っていないことが判明しましたが、それには十分な理由があります。
トランプ流の世界がトレンドにとって良い理由
トランプ氏の政策転換はリターンに打撃を与えました。しかし、彼を大統領の座に押し上げた勢力が、この投資戦略を再び活性化させる可能性があります。
Roll over, SRTs: Regulators fret over capital relief trades
Banks will have to balance the appeal of capital relief against the risk of a market shutdown
オムニバス(法案)の下に投げる:GARはEUの環境規制後退を乗り切れるのか?
停止措置でEU主要銀行の90%が報告を放棄で、グリーンファイナンス指標が宙ぶらりんな状態に
コリンズ修正条項はエンドゲームを迎えたのでしょうか?
スコット・ベッセント氏は、デュアル・キャピタル・スタックを終わらせたいと考えています。それが実際にどのように機能するかは、まだ不明です。
トーキング・ヘッズ2025:トランプ氏の大きな美しい債券を購入するのは誰でしょうか?
国債発行とヘッジファンドのリスクが、マクロ経済の重鎮たちを悩ませています。
AIの説明可能性に関する障壁は低くなってきている
改良され、使いやすいツールは、複雑なモデルを素早く理解するのに役立ちます。
BISの取引高はトレンドを大きく上回っているのか
最新の3年ごとの調査において、外国為替市場の日次平均取引高は9.6兆ドルに急増しましたが、これらの数値は代表的なものと言えるでしょうか。