Quants are using language models to map what causes what
GPT-4 does a surprisingly good job of separating causation from correlation
Divorce rates in Maine and the consumption of margarine; ice cream sales and drowning incidents: it’s easy to find examples of spurious statistical links.
Of course, those handling data should know well that causation and correlation are different things. Nobody would expect ice cream to cause drowning. In the arena of investing, though, true cause and effect can be harder to establish. And one group of quants thinks a lack of rigour in the area is a problem for the industry.
Models should be treated as unscientific unless they’re preceded by a detailed causal analysis, they argue. Otherwise, mis-specified models are likely to find their way into production and to crowd out truer representations of how markets really work.
In pursuit of a purer understanding of the cogs and wheels of markets, quants have started to test different approaches. It isn’t altogether easy.
The objective here is to create a so-called DAG (directed acyclic graph), essentially a data map of causal relationships, drawn as a network of arrows pointing from one variable to another. Documenting causality in such a way goes further than formulating broad hypotheses about a given strategy earning a positive return, the causal camp argues.
The in-vogue way to create DAGs, then, is to use causal discovery algorithms. These algorithms are able to determine from raw observational data what’s driving what.
Is it going to be better at this stage than the best humans? I don’t know. But is it going to be useful when applied at scale? Potentially
Alik Sokolov, Sibli
That sounds good. Quants have access to more data about the world. And more computer power should help, too. But the algorithms have to calculate vast combinations of variables that grow in number exponentially with the complexity of the model. In finance, with its mountains of data, the process can be time-consuming and sometimes impossible based on data alone.
Another route, then, is simply to rely on human expertise. Quants following this approach have run into problems, too, though. It can take multiple experts to draw a relatively simple causal graph. And in markets that move rapidly, such an exercise can prove obsolete before it is even complete.
So quants have come up with a third idea – and an obvious one in today’s world: to apply large language models to the task.
A 2021 project used a large language model built by the firm Causal Link to generate causal graphs based on the opinions of experts, which it gathers from 50,000 news articles a day.
The researchers constructed example graphs linking macro variables such as dollar strength, food prices, gold, oil demand, US inflation and so on.
The build time of causal graphs with this “wisdom of the crowds” approach can be reduced to a “matter of seconds”, the researchers stated.
In another project, conducted late last year, quants employed GPT-4 to organise 153 factors into clusters and map out causal charts within those clusters.
The groupings generated by GPT-4 predicted monthly returns just as well as conventional correlation-based versions, the researchers found, and were less correlated and easier to interpret.
A high rate – two-thirds – of the relationships proposed by GPT-4 aligned with statistical causality tests.
The trick to using large language models in this way, says Alik Sokolov who worked on the project, is to interrogate the model correctly, sometimes with chains of prompts.
Sokolov is managing director of machine learning at RiskLab at the University of Toronto and co-founder and CEO of Sibli, which builds AI tools for investors.
Sokolov reckons firms could in future set up a strategy search loop using models in this way. “Potentially you come up with 10 candidate strategies that are much more likely to be sound from first principles,” he says. “Is it going to be better at this stage than the best humans? I don’t know. But is it going to be useful when applied at scale? Potentially.”
Crowd-sourced causal graphs could help build conviction in a strategy, he reckons. “A six-month research cycle could become a three-month research cycle.”
The process is not foolproof, of course. Human experts are needed to review the output. But in a world where establishing causality becomes a starting point for quant models – and some quants believe that will happen – large language models may have a role to play.
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら 我々の見解
ファニーメイとフレディマックによる住宅ローン買い入れが金利上昇を招く可能性は低い
9兆ドル規模の市場において2,000億ドルのMBSを追加しても、従来のヘッジ戦略を復活させることはできません。
2025年の影響度合い:デリバティブ価格設定が主導的役割を担い、クオンツはAIの群れに追随しない
金利とボラティリティのモデリング、ならびに取引執行は、クオンツの優先事項の最上位に位置しております。
株式には、投資家が見落としている可能性のある「賭け要素」が存在する
投機的取引は、対象となる株式によって異なる形で、暗号資産と株式市場との間に連動関係を生み出します。
パッシブ投資とビッグテック:相性の悪い組み合わせ
トラッカーファンドがアクティブ運用会社を締め出し、ごく少数の株式に対して過熱した評価をもたらしています。
粘着性のあるインフレに対する懸念がくすぶり続けている
Risk.netの調査によると、投資家たちはインフレの終息を宣言する準備がまだ整っていないことが判明しましたが、それには十分な理由があります。
トランプ流の世界がトレンドにとって良い理由
トランプ氏の政策転換はリターンに打撃を与えました。しかし、彼を大統領の座に押し上げた勢力が、この投資戦略を再び活性化させる可能性があります。
Roll over, SRTs: Regulators fret over capital relief trades
Banks will have to balance the appeal of capital relief against the risk of a market shutdown
オムニバス(法案)の下に投げる:GARはEUの環境規制後退を乗り切れるのか?
停止措置でEU主要銀行の90%が報告を放棄で、グリーンファイナンス指標が宙ぶらりんな状態に