How to hone NLP’s detection skills: a cue from a super-sleuth
With a sharper focus, AI readers could help detect hidden exposures for investors
Navigating the so-called mind palace – a skill that uses context to make mental connections – is an Ancient Greek technique deployed by the smartest of fictional detectives in one of his modern-day incarnations.
But could something like Sherlock’s method help investors realise the utility of natural language processing – the field of artificial intelligence that trains machines to read text – by using similar situational cues to examine a company’s exposure to new threats?
Some asset managers are already using NLP to light up the trail of clues that discretionary investors might use to connect these dots. They are searching with NLP for specific signs of trouble in a firm’s own document trail.
And while such firms are openly broadcasting their use of NLP, critics warn the discipline is still in its infancy. NLP engines grasp facts in a dream-like cluster – a patchwork of information lacking sense or context – the informational equivalent of a word cloud.
These limitations have in the past circumscribed NLP’s utility. NLP-derived alpha signals have proven elusive. Most NLP technology failed to see the Ukraine war coming until very late.
And although there’s no denying NLP is a ground-breaking technology, in some respects it’s a dumb one. Asset managers have struggled to find ways to get the most out of it.
As they do so, one idea might be to use the technique in bottom-up, stock-by-stock fundamental analysis.
Instead of weighing the importance of events such as the Ukraine invasion in the news – and then gauging stock betas to that sentiment signal – the alternative approach is to investigate a company’s exposure to a specific emerging risk or opportunity.
A more focused NLP analysis can show how often a topic has been discussed in a firm’s earnings calls, say, but also in company documents as well as public information such as the firm’s news.
Case study
For Voya Asset Management, such an approach was helpful during Russia sanctions, when the effects on individual companies were hard to gauge.
According to Chrissy Bargeron, client portfolio manager covering equity at the asset manager, traditional country-at-risk models capture a lot of the more obvious direct risk when it comes to performance. What is less clear-cut, she says, is the indirect risk.
The firm is trying to find out if there are “different themes at play” behind the headline, geopolitical risks, says Bargeron.
The main goal of the firm’s AI machine learning team is to apply ML to fundamental analysis.
It’s a markedly bottom-up rather than top-down approach.
A machine can pick out more easily than a human, for example, whether revenues are declining in a geographical pattern – a signal that might trigger before news headlines alert investors to a problem.
In the Russia-Ukraine crisis, the first aim of risk management was to minimise direct ownership of Russian securities. As it turned out, Voya owned very little.
But the firm also wanted to know which companies it held were carrying some indirect exposure, such as those that sell a lot to Russia or Ukraine.
The AI team applied NLP to news and earnings-call transcripts to look for mentions of either country.
Their engine picked out 59 stocks, for which Voya was then able to gauge sensitivity to the Russian equity market using more conventional quant regression techniques.
“We found this to be very useful. And it was reactive. We did it right when the crisis happened,” says Bargeron. “We were able to quickly scan all of this and see, within our developed equity investments, where we had that exposure.”
Bottom-up, fundamental analysis. Elementary?
Editing by Louise Marshall
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら 我々の見解
トランプ流の世界がトレンドにとって良い理由
トランプ氏の政策転換はリターンに打撃を与えました。しかし、彼を大統領の座に押し上げた勢力が、この投資戦略を再び活性化させる可能性があります。
Roll over, SRTs: Regulators fret over capital relief trades
Banks will have to balance the appeal of capital relief against the risk of a market shutdown
オムニバス(法案)の下に投げる:GARはEUの環境規制後退を乗り切れるのか?
停止措置でEU主要銀行の90%が報告を放棄で、グリーンファイナンス指標が宙ぶらりんな状態に
コリンズ修正条項はエンドゲームを迎えたのでしょうか?
スコット・ベッセント氏は、デュアル・キャピタル・スタックを終わらせたいと考えています。それが実際にどのように機能するかは、まだ不明です。
トーキング・ヘッズ2025:トランプ氏の大きな美しい債券を購入するのは誰でしょうか?
国債発行とヘッジファンドのリスクが、マクロ経済の重鎮たちを悩ませています。
AIの説明可能性に関する障壁は低くなってきている
改良され、使いやすいツールは、複雑なモデルを素早く理解するのに役立ちます。
BISの取引高はトレンドを大きく上回っているのか
最新の3年ごとの調査において、外国為替市場の日次平均取引高は9.6兆ドルに急増しましたが、これらの数値は代表的なものと言えるでしょうか。
DFASTのモノカルチャー自身が自分の試練となる
ストレステスト開示の頻度と範囲が減少したため、銀行によるFRBモデルの模倣を監視することが困難となっております。