Machines can read, but do they understand?
How a novel NLP application built on Google’s Bert transformer model can help predict ratings transitions
In the quest to give human abilities to machines, reading text and assimilating its context is a crucial step. Understanding spoken or written language allows machines to process large amounts of unstructured data such as news or documents – freeing humans from the billions of man-hours of drudgery necessitated before they can be used to inform decision-making.
The theoretical foundations for natural language processing (NLP), a branch of artificial intelligence that studies how to process textual data, were laid decades ago. Many real-life applications are already taken for granted: spam filters, voice assistants, translation apps and chatbots.
But NLP’s applications in finance have only been developed much more recently. Banks have mostly used it to commoditise applications such as robo-advisory, or to credit-score applicants for credit cards and mortgages. The potential, however, is far greater.
Emanuel Eckrich, director and head of corporate rating methodologies at Deutsche Bank in Frankfurt, has used the technique to predict credit events such as rating downgrades or defaults. The initial motivation was to support the rating team during the large wave of ratings transitions heralded by the Covid-19 pandemic.
Eckrich and his co-authors, Phillip Escott, Rainer Glaser and Christoph Zeiner – all of Oliver Wyman – present a model trained to spot financial information and relevant news in a vast sea of noise that could trigger ratings changes.
The approach has the potential to anticipate rating transitions that analysts might otherwise have spent considerable time determining.
“By supporting the analysts with an early credit warning, it frees up capacity and makes the process more efficient,” says Eckrich. “In particular, with regards to the Covid-19 application, I found it surprising how robust the approach proved to be. Even without making it very specific, the model performed.”
An NLP model’s job is to take unstructured data – typically text, or a mixture of text and numerical information – and turn it into structured data, a format that machines can process, so it can rapidly run the rule over them. To do this, it needs to use a so-called transformer model.
By supporting the analysts with an early credit warning, it frees up capacity and makes the process more efficient
Emanuel Eckrich, Deutsche Bank
Eckrich used Google’s bidirectional encoder representations from transformers – Bert, for short – an open-source neural network-based technique released in 2019 that has already become the industry standard off-the-shelf product for NLP applications. Google’s own search function uses it.
Bert has been trained on a humongous amount of textual data – including decades’ worth of news stories and the entirety of Wikipedia – using a novel ‘bidirectional’ technique that allows the information to move up and down the network, learning the connections between each word and those next to it, thus building a genuine understanding of how language is used in real life.
This creates a representation of language with inbuilt contextualisation – a significant advantage over traditional frequency-based, or ‘bag of words’, approaches – which rely on counting words or short phrases in isolation, in an attempt to highlight key ones. These can be used, for example, to identify emails containing phrases such as ‘you have been selected’ or ‘earn extra cash’ as spam.
Eckrich takes Bert’s outputs as inputs for his model. To make it work for the purpose of rating predictions, two key elements needed to be added. “The first is an approach to reduce noise in the data – and news flow data obviously is particularly noisy,” he explains.
The second element was applying ML classifiers on Bert’s output; these select the relevant information that could affect credit ratings.
Developing all these components of a methodology in-house is unusual, quants note. “Building a pipeline of this kind is a very complex project and parts of it are often outsourced. ‘De-noising’ and feed selection are normally performed by different companies,” says Alexander Denev, former head of AI for risk advisory and financial services at Deloitte.
The limits of NLP
Adopting NLP does come with caveats.
“Besides obvious benefits like speed and performance of using pre-trained NLP transformer models in finance, one should be aware of the potential drawbacks, like [lack of] explainability, data biases and robustness to adversarial examples,” says Nino Antulov-Fantulin, co-founder and head of research at Aisot, an ETH-Zurich spin-off specialised in AI for finance.
Eckrich and his team acknowledge this; the group worked to prove the interpretability of their model by studying and identifying the purpose of different sections of their network. But Eckrich is wary of the limits of NLP – the model cannot be used as a standalone rating engine, he says, and it may struggle to pass the scrutiny threshold needed for modelling regulatory capital.
“For this kind of approach, at the moment, there is probably significant regulatory hesitation regarding applications like determining capital requirements. A neural network which transforms text into a 768-dimensional vector space – and that was trained on an unspecific dataset – might be difficult to accept for a regulator,” admits Eckrich.
“The time when machines will analyse data autonomously and come to the conclusion without human input has not come yet in credit risk; for now they can only support humans,” he concludes.
Machines can indeed understand what they read – now, they just need to be instructed on what to do with it.
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら 我々の見解
粘着性のあるインフレに対する懸念がくすぶり続けている
Risk.netの調査によると、投資家たちはインフレの終息を宣言する準備がまだ整っていないことが判明しましたが、それには十分な理由があります。
トランプ流の世界がトレンドにとって良い理由
トランプ氏の政策転換はリターンに打撃を与えました。しかし、彼を大統領の座に押し上げた勢力が、この投資戦略を再び活性化させる可能性があります。
Roll over, SRTs: Regulators fret over capital relief trades
Banks will have to balance the appeal of capital relief against the risk of a market shutdown
オムニバス(法案)の下に投げる:GARはEUの環境規制後退を乗り切れるのか?
停止措置でEU主要銀行の90%が報告を放棄で、グリーンファイナンス指標が宙ぶらりんな状態に
コリンズ修正条項はエンドゲームを迎えたのでしょうか?
スコット・ベッセント氏は、デュアル・キャピタル・スタックを終わらせたいと考えています。それが実際にどのように機能するかは、まだ不明です。
トーキング・ヘッズ2025:トランプ氏の大きな美しい債券を購入するのは誰でしょうか?
国債発行とヘッジファンドのリスクが、マクロ経済の重鎮たちを悩ませています。
AIの説明可能性に関する障壁は低くなってきている
改良され、使いやすいツールは、複雑なモデルを素早く理解するのに役立ちます。
BISの取引高はトレンドを大きく上回っているのか
最新の3年ごとの調査において、外国為替市場の日次平均取引高は9.6兆ドルに急増しましたが、これらの数値は代表的なものと言えるでしょうか。