Rough volatility’s steampunk vision of future finance
Some of the trickiest puzzles in finance could be solved by blending old and new technologies
Rough volatility has generated a good amount of buzz in quant finance circles lately, which is somewhat surprising given its throwback origins. The models rely on a mid-20th century statistical measure called the Hurst parameter to capture the memory effect in markets. In an era of big data and machine learning, that makes them something of an anachronism. A quant at one large bank says, half jokingly, that his firm is “only interested in data-driven approaches”.
But dismissing rough volatility because of its old-school mechanics may be a mistake. The models are based on well-established, time-tested research. The Hurst parameter was originally developed by the British hydrologist Harold Hurst, who spent his career studying the Nile river. After noticing that fluctuations in the waterline were far from random – overflows were followed by heavier floods, and dry spells by worse droughts – he invented a way to measure the path dependence of time series. Hurst’s work led to the construction of the Aswan High Dam, the world’s largest embankment dam, and earned him the nickname “father of the Nile”.
The Hurst parameter has appeared in quant research over the years. Most recently, finance professors Jim Gatheral and Mathieu Rosenbaum in 2014 used it to capture the tendency of past moves in finance to influence future ones. They coined the term “rough volatility” for models that use the parameter.
The models can generate a surface of implied volatilities for different option strikes in a single calculation. With existing volatility models, such as Black-Scholes and SABR, numerous calculations are required to estimate implied volatilities for each tenor of an option – a process that is both time consuming and error-prone. Rough volatility models do the job faster and, some argue, more accurately.
For financial firms, the benefits could be huge. Quants at Societe Generale estimate that bid/offer spreads for Vix futures and options would shrink by 15–20% if rough volatility models were widely adopted by market-makers. Some hedge funds are already developing arbitrage strategies to exploit the differences between rough volatility and traditional models.
Others, though, seem reluctant to make the shift. The models are still largely untested and require extensive calibration. They will be expensive to implement. And budgets have already been committed to more trendy machine learning projects that have the potential to deliver similar or even better results. But that attitude appears shortsighted.
A new study suggests rough volatility models are a useful complement to data-driven approaches, such as deep hedging. This is because machine learning models struggle most when markets exhibit the sort of memory effects that rough volatility captures. Blanka Horvath, an academic at Kings College and one of the authors of the study, says firms can use rough volatility to cross-check the output of black-box algorithms to ensure they are not going astray. This dynamic works in reverse, too – some quants are using machine learning to calibrate rough volatility models and check their outputs against Black-Scholes-generated volatilities.
Machine learning and artificial intelligence are revolutionary tools that will transform the financial markets in due time. But that does not mean quants should turn their back on the past. The financial models of the future could be built on the foundations of a 60-year-old dam.
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら 我々の見解
ファニーメイとフレディマックによる住宅ローン買い入れが金利上昇を招く可能性は低い
9兆ドル規模の市場において2,000億ドルのMBSを追加しても、従来のヘッジ戦略を復活させることはできません。
2025年の影響度合い:デリバティブ価格設定が主導的役割を担い、クオンツはAIの群れに追随しない
金利とボラティリティのモデリング、ならびに取引執行は、クオンツの優先事項の最上位に位置しております。
株式には、投資家が見落としている可能性のある「賭け要素」が存在する
投機的取引は、対象となる株式によって異なる形で、暗号資産と株式市場との間に連動関係を生み出します。
パッシブ投資とビッグテック:相性の悪い組み合わせ
トラッカーファンドがアクティブ運用会社を締め出し、ごく少数の株式に対して過熱した評価をもたらしています。
粘着性のあるインフレに対する懸念がくすぶり続けている
Risk.netの調査によると、投資家たちはインフレの終息を宣言する準備がまだ整っていないことが判明しましたが、それには十分な理由があります。
トランプ流の世界がトレンドにとって良い理由
トランプ氏の政策転換はリターンに打撃を与えました。しかし、彼を大統領の座に押し上げた勢力が、この投資戦略を再び活性化させる可能性があります。
Roll over, SRTs: Regulators fret over capital relief trades
Banks will have to balance the appeal of capital relief against the risk of a market shutdown
オムニバス(法案)の下に投げる:GARはEUの環境規制後退を乗り切れるのか?
停止措置でEU主要銀行の90%が報告を放棄で、グリーンファイナンス指標が宙ぶらりんな状態に