Could machine learning improve CVA and IM calculations?
Banks have built ways to calculate CVA more quickly, but neural networks could offer a more accurate method
Credit valuation adjustments (CVA) and initial margin (IM) requirements aren’t the easiest measures to compute, especially for a large portfolio of assets.
Both require users to calculate the future exposure of the portfolio in question, which means the path of each individual asset needs to be simulated. All might have non-linear features such as embedded optionality and exercise rights, making it impossible to use simple partial differential equations (PDEs) – which become very difficult to solve at higher dimensions – to price them accurately.
Over the past decade, numerous researchers have attempted to improve the speed and accuracy of CVA calculations. More recently, banks have also had to calculate initial margin requirements – arguably even more complex than CVA – thanks to the phase-in of non-cleared margin rules from 2016. A new paper from a quant at Societe Generale attempts to reduce the complexity of both calculations, using machine learning techniques.
In this month’s first technical, CVA and IM: welcome to the machine, Pierre Henry-Labordère, a member of the global markets quantitative research team at Societe Generale Corporate & Investment Banking in Paris, proposes a new technique that combines a backward stochastic differential equation (BSDE) – which can capture non-linearity – with the use of machine learning to find a less complex way to calculate CVA and initial margin.
Many large dealers are able to calculate CVA and its Greeks within a reasonable amount of time now. But that is mainly due to heavy investment in technologies such as graphics processing units (GPUs), which can run thousands of calculations in parallel. Others have combined mathematical tricks such as adjoint algorithmic differentiation to speed up the calculation.
The research was driven by the challenges of familiar, less-than-perfect approaches, says Henry-Labordère. Take CVA calculations for starters, where it is not possible to use something such as a partial differential equation (PDE) solver for portfolios approaching any reasonable size.
“By way of example, if we have one option depending on one underlying, for this one you can use a Monte Carlo algorithm or a PDE solver. Now for the CVA, say the number of underlyings is very large – say, 10 assets – it is not possible to use deterministic methods. Therefore we need to rely on a probabilistic algorithm,” he says.
Pierre Henry-Labordère’s solution uses neural networks to find the upper and lower bounds of the CVA and IM one wants to calculate on a portfolio, enabling one to quickly optimise the simulated path of the asset by focusing on that range
Another issue is that CVA is non-linear. This means it is not possible to simply sum the CVA of a given portfolio with one kind of asset and the CVA of a portfolio of a different underlying asset to arrive at the CVA of a portfolio containing both assets, as there will be interactions between the two.
What quants typically then do is run a nested Monte Carlo simulation, or run a non-linear PDE – but both are very computationally intensive. In the case of the former, one needs to calculate not only the expected loss on a given portfolio, but also the individual exposures at each future point in time based on the movement and exercise of underlying assets. Non-linear PDEs, on the other hand, need numerical methods to solve.
“We don’t have perfect tools for solving this non-linearity problem,” adds Henry-Labordère. “You introduce some time steps between zero and the maturity of, let’s say, 10 years, and each time step will represent a probability of default of the counterparty. On each path and at each time step, you need to compute the positive part of the mark-to-market, and you do that for each Monte Carlo path. So, at the end, what you need to do is a Monte Carlo of a Monte Carlo.”
Neural network solution
Henry-Labordère’s solution is to use a machine learning approach called neural networks to eliminate an additional Monte Carlo step in the calculation. Neural networks – which function in a similar way to biological neurons – are typically used as an unsupervised learning method to learn patterns from large datasets and make predictions or decisions.
His solution uses neural networks to find the upper and lower bounds of the CVA and IM one wants to calculate on a portfolio. This gives a tight range within which the values would fall, and enables one to more quickly optimise the simulated path of the asset by focusing on that range.
“If you try to minimise a function that depends on 200 parameters or 1,000 parameters, you will find the minimisation algorithm is not working properly, because you have a huge number of valleys or mountains. So when you are doing the optimisation, sometimes you converge not towards the true minimiser, but a local minimiser,” says Henry-Labordère.
This is analogous to pricing an American option based on an optimal stopping time – a time at which one could exercise the option to maximise gains. The optimal stopping time gives a rule based on the upper and lower bounds of the underlying to determine the optimal course of action given a particular time step. If this function is already available, one does not need a separate Monte Carlo to simulate the path of the payoff or exposure at each time step.
For CVA or IM calculations, this works in a similar way: the neural network algorithm creates a rule to find the upper and lower bounds, which is then fed into the BSDE algorithm. This eliminates the need to run a nested Monte Carlo.
Henry-Labordère says the CVA and IM calculations derived using this technique match those of a single-asset portfolio priced using a PDE, which gives the true price.
Editing by Tom Osborn
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら 我々の見解
トランプ流の世界がトレンドにとって良い理由
トランプ氏の政策転換はリターンに打撃を与えました。しかし、彼を大統領の座に押し上げた勢力が、この投資戦略を再び活性化させる可能性があります。
Roll over, SRTs: Regulators fret over capital relief trades
Banks will have to balance the appeal of capital relief against the risk of a market shutdown
オムニバス(法案)の下に投げる:GARはEUの環境規制後退を乗り切れるのか?
停止措置でEU主要銀行の90%が報告を放棄で、グリーンファイナンス指標が宙ぶらりんな状態に
コリンズ修正条項はエンドゲームを迎えたのでしょうか?
スコット・ベッセント氏は、デュアル・キャピタル・スタックを終わらせたいと考えています。それが実際にどのように機能するかは、まだ不明です。
トーキング・ヘッズ2025:トランプ氏の大きな美しい債券を購入するのは誰でしょうか?
国債発行とヘッジファンドのリスクが、マクロ経済の重鎮たちを悩ませています。
AIの説明可能性に関する障壁は低くなってきている
改良され、使いやすいツールは、複雑なモデルを素早く理解するのに役立ちます。
BISの取引高はトレンドを大きく上回っているのか
最新の3年ごとの調査において、外国為替市場の日次平均取引高は9.6兆ドルに急増しましたが、これらの数値は代表的なものと言えるでしょうか。
DFASTのモノカルチャー自身が自分の試練となる
ストレステスト開示の頻度と範囲が減少したため、銀行によるFRBモデルの模倣を監視することが困難となっております。