Solving the enigma of the volatility smiles
Has the problem of jointly calibrating the volatility smiles of the Vix and S&P 500 been solved?
For years, art historians and scientists have tried to unlock the mysteries of the Mona Lisa’s smile, which flickers and fades when viewed from different angles. Quants are similarly beguiled by the so-called volatility smile, the characteristic shape obtained by plotting implied volatilities against the strikes of an option.
Since the introduction of derivatives on the Vix index in 2006, many have sought to jointly calibrate the smiles of S&P and Vix options. One may expect them to match, since the Vix is a measure of the 30-day implied volatility of an option on the S&P 500. But their smiles are different: the S&P’s resembles a smirk to the left, while the Vix smirks to the right.
This reflects the different skews, or slopes, of the Vix and S&P. The implied volatility of an S&P option is a decreasing function of the strike, while the implied volatility of a Vix option is an increasing function of the strike.
Conventional volatility models cannot calibrate both.
This matters, because Vix options are commonly used to hedge volatility exposure on the S&P 500. If the two options are modelled separately, they might not fit market data consistently, and in theory an arbitrage may arise.
Julien Guyon, a senior quantitative analyst at Bloomberg, published his solution to the problem in Risk.net in early April.
Rather than modelling continuous time dynamics, Guyon’s discrete-time model tries to fit just three data points: the S&P and Vix smiles at a given Vix future expiry date, and the S&P smile 30 days after. “I realised that in order to easily decouple the at-the-money skew of the S&P and at-the-money implied volatility of the Vix, it was much more convenient to work in discrete time”, says Guyon.
The key was designing a joint distribution for the three variables consistent with each marginal distribution, subject to a set of constraints. This is an optimal transport problem, with known solutions. The calibration is then performed with a non-parametric approach, which, according to Guyon, allows for a perfect calibration to market data.
One of the main findings of this research is the absence – at least in the sample – of joint arbitrage opportunities between Vix and S&P options. In fact, Guyon proves this is a consequence of the existence of a model that calibrates both smiles.
Guyon’s work, which was circulating in the quant community for some months, inspired Mathieu Rosenbaum, professor at École Polytechnique in Paris, to devise a completely different solution to the same problem.
If you want to fit the S&P smile, the rough vol is going to be better than any other classical stochastic volatility models
Mathieu Rosenbaum, École Polytechnique
Together with Jim Gatheral, a professor of mathematics at Baruch College in New York, and Paul Jusselin, a PhD student in financial mathematics at École Polytechnique, Rosenbaum developed a diffusion model based on rough volatility – a concept pioneered by Gatheral, Thibault Jaisson and Rosenbaum in 2014 and widely explored by other quants in recent years.
“If you want to fit the S&P smile, the rough vol is going to be better than any other classical stochastic volatility models,” says Rosenbaum.
The second ingredient in the model is the so-called Zumbach effect, which accounts for the way past volatility and price dynamics influence future volatility.
In total, the model has only five parameters, “with easy interpretation for all of them”, Rosenbaum says. He is very satisfied with the results: “I call it perfect fit with five parameters.”
Guyon begs to differ. “I respectfully disagree, because when you look closely at their numerical results, you can recognise the kind of issues I had to deal with: not enough at-the-money S&P skew,” he says.
“But I must say their model is very interesting,” Guyon adds. “They get a very decent joint fit, especially considering the very small number of parameters.”
The fit could be improved. A paper published last year by Blanka Horvath of King’s College, Aitor Muguruza of Natixis and Mehdi Tomas at École Polytechnique, showed how neural networks can be used to better calibrate rough volatility models. Rosenbaum is working on implementing this.
Others argue the problem has already been solved.
If you have a model in which the index can jump down and Vix can simultaneously jump up, you can reproduce both the SPX and the Vix skew with just one parameter
Rama Cont, Oxford University
In 2013, Rama Cont, professor of mathematical finance at Oxford University, and Thomas Kokholm of Aarhus University, proposed a jump-diffusion model based on a simple principle. “If you have a model in which the index can jump down and Vix can simultaneously jump up, you can reproduce both the SPX and the Vix skew with just one parameter,” says Cont.
Such co-moves in the index and its volatility link the two smiles and explain the opposing skews.
Cont first developed his jump-diffusion model to address a practical problem in the industry. Initial margins for options and futures on Vix and S&P were computed separately, using two different models. “That led to an incorrect representation of volatility risk,” he says. “With a consistent joint model, when you hedge one instrument with the other, the model shows that the risk is reduced and avoids overestimating risk,” he explains.
This approach has not gained traction with banks, however. A head quant at a global investment bank says he is sceptical of volatility models with jumps because of their limited tractability and the difficulties with risk managing and calibrating them. “Jumps lead to incomplete markets, so it is rare that they are adopted to price options in production,” he says.
Instead, banks model the two option smiles independently: the Black-Scholes implied volatility of the Vix and its corresponding futures are marked using observed options prices, while the S&P volatility surface is marked separately to reconcile with the theoretical prices of the Vix and Vix futures, with certain convexity adjustments. This approach is theoretically inconsistent, and care must be taken to ensure the S&P implied volatility surface is reflected properly in the Vix and Vix futures prices when calculating risk.
“It’s a very approximate solution,” admits the head quant, “but that is what most banks have to work with.”
Still, he acknowledges that the two new models from Guyon and Rosenbaum et al are an important step towards reconciling the two smiles.
“These models ultimately should be useful for live risk management, and include risk sensitivities, but they still have to provide a solution that is tractable and reasonably fit to reality in continuous time,” he says. “Quants have real stress scenarios from 2018 and from the current Covid-19 crisis. If their models fail to provide good risk management, they might turn out to be more dangerous than useful, and their mispricing could lead to major losses.”
The joint calibration of the Vix and S&P smiles has not yet been satisfactorily achieved and there is no consensus on the way forward. Rosenbaum thinks the rough volatility model will be up to the job once the neural network calibration is implemented. Cont still reckons his 2013 jump model already solves the problem. Guyon is working on a continuous-time extension of his discrete time approach, to allow for risk management in real time.
When the problem is solved, there will be fewer smiles to explain.
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら 我々の見解
粘着性のあるインフレに対する懸念がくすぶり続けている
Risk.netの調査によると、投資家たちはインフレの終息を宣言する準備がまだ整っていないことが判明しましたが、それには十分な理由があります。
トランプ流の世界がトレンドにとって良い理由
トランプ氏の政策転換はリターンに打撃を与えました。しかし、彼を大統領の座に押し上げた勢力が、この投資戦略を再び活性化させる可能性があります。
Roll over, SRTs: Regulators fret over capital relief trades
Banks will have to balance the appeal of capital relief against the risk of a market shutdown
オムニバス(法案)の下に投げる:GARはEUの環境規制後退を乗り切れるのか?
停止措置でEU主要銀行の90%が報告を放棄で、グリーンファイナンス指標が宙ぶらりんな状態に
コリンズ修正条項はエンドゲームを迎えたのでしょうか?
スコット・ベッセント氏は、デュアル・キャピタル・スタックを終わらせたいと考えています。それが実際にどのように機能するかは、まだ不明です。
トーキング・ヘッズ2025:トランプ氏の大きな美しい債券を購入するのは誰でしょうか?
国債発行とヘッジファンドのリスクが、マクロ経済の重鎮たちを悩ませています。
AIの説明可能性に関する障壁は低くなってきている
改良され、使いやすいツールは、複雑なモデルを素早く理解するのに役立ちます。
BISの取引高はトレンドを大きく上回っているのか
最新の3年ごとの調査において、外国為替市場の日次平均取引高は9.6兆ドルに急増しましたが、これらの数値は代表的なものと言えるでしょうか。