
Fake data can help backtesters, up to a point
Synthetic data made with machine learning will struggle to capture the caprice of financial markets
Quant investors often complain they have only a single version of history against which to test their ideas.
One way to get round the problem has been to make history up. Quants have done that for a long time already – using bootstrapping or Monte Carlo simulations to create alternative time series data for the backtests they run.
A new idea, though, is to employ machine learning techniques to invent wholly artificial data. Quants are experimenting with these models and say they can produce data indistinguishable in some cases from the real thing.
The potential of the new ‘fake’ data gives cause for optimism. With it, quants can test strategies against scenarios that might have happened as well as those that did. There’s a caveat, though. Fake data may fix some of the shortcomings of conventional backtesting, but it can’t fix all of them.
The models the quants are using to generate the new data effectively learn the process by which past data was generated.
That’s worked impressively outside investing, where the models have been used to create anything from deep fake videos to so-called Ganimals – synthesised animals, like an elephant crossed with a cat – conjured up using generative adversarial networks (Gans).
Amazon used synthetic data to train its Alexa bot to understand instructions in Hindi. Rather than train the voice recognition software with millions of real commands, the tech firm generated fake samples from data on just a subset of recordings.
But applications in financial markets face a key difference from applications in other such fields. Markets are fast-changing systems, subject at times to sudden, unexpected regime shifts.
Backtesting with multiple versions of history may be better than backtesting with one. But the generative models still are recreating a version of events learnt from the past. And even a richer view of history could be a poor guide to the future.
One quant draws a parallel with forecasting climate change, a process in which what’s gone before – by definition – will be largely redundant. And in the case of equity markets, “even the most intimate knowledge of history isn’t going to tell you where Apple’s stock price is going to be,” he says.
In another way, too, historical data could prove a bad teacher.
The mechanics of the market are hugely complex, including the actions and motivations of thousands of investors, companies and intermediaries and the complex dynamics of market microstructure. That’s before accounting for the influence of the global macro environment, news events, and so on.
It’s never guaranteed the data will lead a model to a full understanding of those mechanics. That’s to say, the training set may provide only a patchy representation of the truth. “You could end up generating fake data that’s just too simplistic for what’s at stake,” says another quant. “It could be counterproductive.”
These are limitations the data-generation models have not faced outside finance. They also are limitations that apply to any form of backtesting, be it conventional or using fake data. But as investors proceed with the new techniques, they will need to keep sight of the problems that fake data cannot solve. A picture of an elephant or a cat looks like a picture of an elephant or a cat for ever. A picture of a market is always changing.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact info@risk.net to find out more.
You are currently unable to copy this content. Please contact info@risk.net to find out more.
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Printing this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Copying this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@risk.net
More on Our take
Korea’s ‘worst-of’ times are here to stay
Chinese houses’ success in Korean autocalls could stymie hopes of diversifying the product mix
Could intraday FX swaps help reduce settlement risk?
New swap platform hopes to ease funding pains, but can it promote more use of PvP?
Talking Heads 2023: A turf war in credit markets
Banks are looking to reclaim territory they previously ceded to market-makers and private funds
FX-style crypto platforms could bridge gap with TradFi
Emergence of execution-only ECNs, prime brokers and clearing houses brings new confidence in crypto
Skew this: taking the computational burden off basket options
Dan Pirjol presents a snap formula for estimating implied volatility skew in an instant
Shhh, don’t tell: the struggle to keep skew under wraps
Liquidity recycling by clients has made it more difficult for banks to keep skews quiet
How a machine learning model closed a hidden FX arbitrage gap
MUFG Securities quant uses variational inference to control the mid volatility of options
The AOCI elephant in the DFAST room
After March’s banking crisis, Fed stress tests should adopt harsher and wider ranging rate scenarios