メインコンテンツに移動

Digging deeper into deep hedging

Quants have harnessed machine learning to hedge vanilla derivatives. But dynamic techniques and GenAI simulated data can push the limits of deep hedging even further, as derivatives guru John Hull and colleagues explain

Digging-deep-into-deep-hedging

Traditionally, derivatives portfolios have been hedged by managing their sensitivity to changes in underlying factors such as volatility or interest rates. These sensitivities are labelled with Greek letters: delta, gamma, vega, etc. The Greeks have the advantage that they are easy to calculate and additive. (For example, if portfolio Z is the sum of portfolios X and Y, the delta of Z is the

コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。

これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe

現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to Risk.net? View our subscription options

無料メンバーシップの内容をお知りになりたいですか?ここをクリック

パスワードを表示
パスワードを非表示にする

Most read articles loading...

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

ログイン
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here