An ‘optimal’ way to calculate future P&L distributions?
Quants use neural networks to upgrade classic options pricing model
Calculating the future profit and loss (P&L) distribution of non-linear portfolios is a tricky problem – one that is typically handled by running a series of Monte Carlo simulations, with all the computational burden that entails.
In Deep learning profit and loss, published in Risk.net this month, a trio of Italian quants attempt to solve the problem using neural networks for the first time.
“We wanted to compute the future P&L distribution of a portfolio with correlated assets and provide a semi-automatic system where new assets and complex structures can be added and computed easily,” explains Pietro Rossi, a senior analyst in the data science unit at Italian consultancy firm Prometeia, and an adjunct professor of computational finance at the University of Bologna.
The approach developed by Rossi and his co-authors – Giacomo Bormetti and Flavio Cocco – also professors at the University of Bologna, is a generalisation of the simulation-based Longstaff and Schwartz model introduced in 2011 to price American options. Key to that model is the so-called continuation value that a portfolio would have if options contained within were not exercised. This is calculated using polynomials that describe the payoffs of individual options in the portfolio.
Rossi and his co-authors eschew the polynomial approach and instead use neural networks to calculate the continuation value. This allows them to handle portfolios of non-linear or path-dependent products without the need to re-run optimisations or devise workarounds for individual options.
“With neural networks, we can easily fit complex products with articulated exercise surfaces without having to look for the clever regressors one would need with the standard Longstaff and Schwartz model,” says Rossi.
Our small technical innovation here is that at every point we generate a bunch of trajectories – 1,024, to be precise
Pietro Rossi, Prometeia
The polynomial approach has the advantage of simplicity. Relatively easily, interpolators can be built and the associated linear equations solved. But this only works with just one or a few vanilla products. It is difficult to apply this approach to a whole portfolio without running into the curse of dimensionality. And determining if and when an option will be exercised is a high-dimensional problem. It is typically solved by propagating backward the continuation value and comparing it to the current price to see whether or not is makes sense to exercise.
The Longstaff and Schwartz method uses only one trajectory to compute the backward-propagated continuation value. This is fine when dealing with American options, which are exercisable at any time, but it is unsatisfactory when dealing with Bermudan options that are exercisable at pre-defined dates.
“Our small technical innovation here is that at every point we generate a bunch of trajectories – 1,024, to be precise,” says Rossi. This is analogous to running a series of “small Monte Carlo simulations” to compute the future value, he adds.
By back-propagating all the potential future values, the neural network extracts the full P&L distribution, rather than just an expected price.
The authors tested the model with a sample portfolio of three options – an American put, a European call and a Bermudan call – written on the same underlying to show how it deals with portfolios of highly correlated assets. They found it was particularly beneficial in scenarios with a long time horizon. Using polynomials to calculate the P&L distribution of a product with a one-year maturity over different points in its life is “a tough task”, Rossi says. “By simulating the trajectories the way we do, this becomes easier.”
Optimal stopping time
The paper has generated some mild controversy in quant circles. The authors initially set out to explore potential applications of reinforcement learning in finance before ultimately deciding the calculation of the P&L distribution was best approached as an optimal stopping time problem.
Some quants are not convinced. “I would naturally opt to tackle the problem from a reinforcement learning angle,” the chief data scientist at a large global bank says after reading the paper, which he generally praises as an “original work on an important issue that is relevant to all banks”.
In reinforcement learning, an algorithm attempts to learn the sequence of actions an agent can take to maximise a defined function. This is easily analogous to modelling the behaviour of an options trader who buys and sells future payoffs with the aim of earning the highest returns.
But Rossi is adamant the optimal stopping time approach is the right one. “I disagree with the idea that a reinforcement learning approach would have been preferable,” he says. “In the financial literature, the optimal stopping time is a better understood concept, though reinforcement learning is probably more fashionable.”
The model is still in the early stages of development and has not yet been applied to real portfolios. Meanwhile, the authors are looking to apply their method to solve the more complex problem of calculating the P&L distribution of basket options.
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら ビュー
ブラックロックが、ピエール・サロー氏を最高リスク責任者に任命
現CROのエドワード・フィッシュウィック氏は、ブラックロックのRQAグループにおいて研究部門の責任者を務めることとなります。
2026年クオンツ修士課程ガイド:プリンストン大学とバルーク校が二強体制を確立
コロンビア大学が3位に躍進、チューリッヒ工科大学が欧州のライバル校をリードしております。
クアンキャスト・マスターズ・シリーズ:ウォルター・ファルカス、チューリッヒ大学(ETH)
スイスの計画、大規模な共同教員陣、そして公開プレゼンテーションがプログラムを形作っています。
Quantcast Master’s Series: Jack Jacquier, Imperial College London
A shift towards market micro-structure and ML has reshaped the programme
クオンツキャスト・マスターズ・シリーズ:ナム・キフン(モナシュ大学)
メルボルン拠点のプログラムが年金基金業界に目を向ける
クオンツキャスト・マスターズ・シリーズ:ペッター・コルム(クーラント研究所)
ニューヨーク大学のプログラムは、ほぼ専ら金融業界のエリート実務家の方々によって指導されております。
クオンツになりたい?採用される方法(そして採用されない方法)をご紹介しましょう
好奇心を保て、チームプレーを心がけ、適切な言葉遣いにも気を付けましょう。そして、驕らないようにしましょう。
クオンツキャスト・マスターズ・シリーズ:ローラ・バロッタ(ベイズ・ビジネススクール)
ビジネススクールでは、実践的な知識の教授を最優先とし、現実社会を鋭い視点で捉えています。