Banks should quantify loan-loss model risk – academic
Models such as those used for IFRS 9, CECL or CCAR are prone to errors, and should be accounted for
Banks should account for – and capitalise against – the risk of the models they use to forecast losses on loans being wrong, says forthcoming research.
In Quantification of model risk in stress testing and scenario analysis, the SAS Institute’s Jimmy Skoglund proposes a method of quantifying model risk using stressed transition probability matrices for credit loss impairment forecasting, in a bid to put a dollar value on the amount banks should set aside against the risk of their models offering inaccurate forecasts.
Two major strands of post-crisis reform – the shift to expected credit loss accounting, and the introduction of stress tests that rely on macroeconomic loss forecasting – have pushed banks to develop more accurate credit loss forecasting models. Most obviously, the new international accounting standard, IFRS 9, and its sister US standard, current expected credit loss, ask banks to provision against the risk of loans turning sour based on forecasted future losses, rather than waiting till losses are incurred.
Regulatory stress-testing regimes, meanwhile – most obviously the US Federal Reserve’s Comprehensive Capital Analysis and Review programme, as well as Europe-based ones run by the European Banking Authority – require banks to measure their capital adequacy against a series of adverse scenarios over a given period of time.
That makes the assumptions that underpin these models crucial from a capital standpoint – but it is rare that banks actively capitalise against the risk of their outputs being wrong, says Skoglund.
“Current analysis of model risk does not translate into actual numbers that allow explicit quantification of a model risk buffer,” argues Skoglund. “Even under best-estimate impairment forecasts, stressed macroeconomic scenarios are frequently being included to mitigate overly positive scenario selection bias in impairments estimation.”
Banks have complained that regulatory guidance on the new expected credit loss modelling under the new accounting regimes has been vague. IFRS 9, for instance, asks banks to base their estimates of a loan’s lifetime expected credit losses on ‘reasonable and supportable’ information – a requirement that banks argue lacks a clear definition. Others have pointed out this leeway could encourage banks to pick and choose the forecasts they feed into their models – for instance, by shortening time horizons to avoid including data where downturns are expected.
Current analysis of model risk does not translate into actual numbers that allow explicit quantification of a model risk buffer
Jimmy Skoglund, SAS Institute
With a focus on loss underestimation, Skoglund’s research seeks to account for the model risk he argues is in inherent credit loss projections, demonstrating how portfolio loss forecasts can change when this is considered. Skoglund posits that, since financial crises are – statistically speaking – rare events, models developed for stressed-loss forecasting are prone to significant model risk.
Proposing a ‘robustness approach’, the paper says that model risk can be broadened out beyond considering parametric uncertainty; by applying relative entropy techniques, loss forecasts are “tilted” to consider model risk.
Skoglund uses proportional hazard models to generate macroeconomic and idiosyncratic loan path-dependent state transition probabilities in a delinquency state transition. Using relative entropy techniques, the “distance” between a set of models and a base model is measured. Model risk is given as the worst case out of all models within a given distance for a given payout. This allows model mis-specification robustness to be numerically quantified using exponential tilting towards an alternative probability law. Without specifying explicit alternative models, robustness is sought against alternative models within a certain distance.
Skoglund says: “The worst-case obtained represents in general an upward scaling of the term-structure consistent with the exponential tilting adjustment. The relative entropy approach to model risk we use has its foundation in economics with robust forecasting analysis, and has recently started to be applied in risk management.”
Skoglund uses a robust estimator of the portfolio loss tilted away from the plain average loss using a loss ratio, controlled by a parameter determining the degree of deviation from the plain average loss.
Because a model generates a number of outcomes, posits Skoglund, it is prudent to consider not only average loss predictions, but also some measure of the worst outcome. Relative entropy provides such a prudent estimate of expected loss using the exponential tilting of the loss estimate.
Because the model loss estimates that are tilted away from the original model are measured in currency amounts, they can be used for quantification of model risk buffers under the relative entropy framework.
Skoglund emphasises that his robustness approach is intended to complement, rather than replace, traditional model risk management practices – the use of sensitivities-based analyses or challenger models, for example – and does not negate the need for qualitative model risk management approaches, such as the use of conservative assumptions.
Skoglund’s paper will be published in the March 2019 issue of the Journal of Risk Model Validation.
Editing by Tom Osborn
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら リスク管理
CMEのシステム障害を受け、BofAはホリゾンタルCCPの修正を強く要請したが、他の関係者はこれに難色を示している
アナリストによれば、清算業務の混乱は、FMXとの先物取引の交換に関する主張を裏付けるものとなっています。
5行に1行の銀行が、30日間の流動性サバイバル期間を目標としている
ALMベンチマーキング調査によりますと、流動性リスクに対する許容度には、大手レンダー間でも大きな差異が見受けられます。
銀行のALM技術は、依然としてマニュアルな業務フローが主流となっている
バッチ処理とExcelファイルが依然として広く普及しており、技術アップグレードを計画しているレンダーは4社に1社のみです。
多くの銀行が流動性ストレステストにおいてSVBの亡霊を無視している
ALMベンチマーキング調査において、大半の銀行では30日未満のストレス期間に焦点を当てた内部テストを実施しておりません。
Quant Finance Master’s Guide 2026
Risk.net’s guide to the world’s leading quant master’s programmes, with the top 25 schools ranked
ALM Benchmarking: explore the data
View interactive charts from Risk.net’s 46-bank study, covering ALM governance, balance-sheet strategy, stress-testing, technology and regulation
スタッフ、サバイバル・デイズ、モデル――銀行がALMで分かれる点
流動性リスクと金利リスクは銀行業と同じく古くから存在する課題ですが、当社のベンチマーク調査対象となった46行では、それらを管理する手法がそれぞれ異なっております。
CMEグループは米国債清算業務の認可取得後、顧客獲得競争に直面している
一部のメンバーは2026年の開始日にコミットする準備が整っていません。一方、競合するFICCはサービスを強化しています。