メインコンテンツに移動

Filling the gaps

Calibrating a local volatility model to options prices is a complicated process requiring both interpolation of liquid prices and extrapolation beyond them. Recently focus has turned to efficient numerical methods. Here, Alex Lipton and Artur Sepp show how to improve this using a classical analytic tool

mathematics

Some of the most fundamental and long-considered solved problems of financial engineering, such as construction of yield curves and calibration of implied volatility surfaces, have recently turned out to be more complex than previously thought.

In particular, it has become apparent that one of the main challenges of options pricing and risk management is the sparseness of market data for model

コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。

これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe

現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to Risk.net? View our subscription options

無料メンバーシップの内容をお知りになりたいですか?ここをクリック

パスワードを表示
パスワードを非表示にする

Most read articles loading...

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

ログイン
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here