Gaussian GenAI:合成市場データ生成
混合モデルを用いて金融時系列を生成する方法を提示
PDFをダウンロードするにはここをクリック
Jörg Kienitzは、ガウス混合モデル(ガウスの凸組み合わせ)に基づき、実世界の尺度Pの下で合成市場データを生成する方法を提案します。一度数値的にフィッティングすれば、この方法は解析的です。特に、条件付きで高次元のケースを扱うことができ、変量のシミュレーションも容易です。この方法の結果は、主成分分析と同じように解釈できます。時系列生成、データの埋め戻し、イールドカーブやボラティリティ曲面の生成に適用することで、この手法の威力を実証します。
金融市場データの特性は、状態変数の選択によって大きく左右されます。適切な選択は、パフォーマンスと推定の安定性のトレードオフを保証し、特定のリスクを回避します。最小限の精度低下で状態変数の数を減らすことが最も重要です。このトレードオフの初期のよく知られた例が、主成分分析(PCA)の適用です
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら カッティング・エッジ
時間非同次モデルにおけるアメリカンオプションの行使価格の変動範囲
価格設定モデルは、マイナス金利または利便性利回りを考慮に入れるために拡張されます。
クアンキャスト・マスターズ・シリーズ:ウォルター・ファルカス、チューリッヒ大学(ETH)
スイスの計画、大規模な共同教員陣、そして公開プレゼンテーションがプログラムを形作っています。
期待値と価格の相対エントロピー
リスク中立価格設定からエントロピーリスク最適化への移行
Quantcast Master’s Series: Jack Jacquier, Imperial College London
A shift towards market micro-structure and ML has reshaped the programme
クオンツキャスト・マスターズ・シリーズ:ナム・キフン(モナシュ大学)
メルボルン拠点のプログラムが年金基金業界に目を向ける
クオンツキャスト・マスターズ・シリーズ:ペッター・コルム(クーラント研究所)
ニューヨーク大学のプログラムは、ほぼ専ら金融業界のエリート実務家の方々によって指導されております。
クオンツキャスト・マスターズ・シリーズ:ローラ・バロッタ(ベイズ・ビジネススクール)
ビジネススクールでは、実践的な知識の教授を最優先とし、現実社会を鋭い視点で捉えています。
商品指数デリバティブにおける将来の動向をモデル化することの重要性
商品デリバティブにおける指数ベースおよび原資産ベースの価格設定手法についてご説明いたします。