
Faith in the machine
The coronavirus crisis could be a defining moment for machine learning in finance
The machines have had their ups and downs of late.
Fraud detection systems that rely on machine learning have not coped at all well with the turbulence caused by the coronavirus lockdowns. But other automated systems are having a comparatively good war.
Contrary to expectations, algorithmic execution is seeing a boom. Ralf Donner, head of fixed income, currencies and commodities execution solutions at Goldman Sachs, estimates a 50% increase in algo foreign exchange volumes since markets began to crash in March. Customers grew comfortable with algorithmic execution during quieter times, he speculates, and shifted more volume their way during a crisis to free up more time to cover the more volatile equity and commodity markets.
And machine learning has had some notable successes in the fund management sector. Not every fund using machine learning methods has produced good returns, but an index of the sector shows decent performance, and some managers report that machine learning has made a significant – and lucrative – difference.
In particular, the machine learning advantage showed itself early on in the pandemic, spotting the first signs of pandemic risk and recommending derisking or even a stop to trading.
Some have turned the machines on the virus itself. Quants from various parts of the financial industry are repurposing models designed for financial analysis and options pricing to simulate the spread of the virus and the effectiveness of policy responses. And while the goal of many is to predict the market response, some believe their work could help shape policy responses as the crisis continues.
The crisis was also a reminder that models are only as good as the data that goes into them. When faced with an unprecedented event such as the coronavirus crisis, models based on historical data are of limited use. To address this, some quants are experimenting with machine learning techniques to create ‘synthetic’ datasets. These so-called market generators can spit out vast quantities of realistic but fictional data, which could be used to train the machines of the future.
The combination of machine learning and unlimited data can be a powerful one. If the pandemic serves as a stress test to cull the worst-performing machine learning applications and move the state of the art on, 2021 could be a revolutionary year for finance.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact info@risk.net to find out more.
You are currently unable to copy this content. Please contact info@risk.net to find out more.
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Printing this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Copying this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@risk.net
More on Our take
FX-style crypto platforms could bridge gap with TradFi
Emergence of execution-only ECNs, prime brokers and clearing houses brings new confidence in crypto
Skew this: taking the computational burden off basket options
Dan Pirjol presents a snap formula for estimating implied volatility skew in an instant
Shhh, don’t tell: the struggle to keep skew under wraps
Liquidity recycling by clients has made it more difficult for banks to keep skews quiet
How a machine learning model closed a hidden FX arbitrage gap
MUFG Securities quant uses variational inference to control the mid volatility of options
The AOCI elephant in the DFAST room
After March’s banking crisis, Fed stress tests should adopt harsher and wider ranging rate scenarios
China needs an RMB liquidity absorber – HK might be the answer
Increasing HKMA’s CNH debt issuance could help cement renminbi’s role in financial markets
Into the quantiverse: real-world pricing goes arbitrage-free
QRM quants claim to have bridged divide across ‘multiverse’ of fixed-income models
A three-point turn in derivative design
Citibank quant’s triangle method allows information geometry to be applied to hedge structuring