
Can robots learn to manage risk?
Will machine learning transform risk management or give birth to a new breed of model risk? Probably both
From the shiny corridors of BlackRock’s Palo Alto laboratory, to the cramped shared workspaces of scientifically minded hedge fund start-ups, to the hallways of quantitative investing stalwarts such as Renaissance Technologies and Two Sigma, artificial intelligence (AI) is being adopted as the new temple of asset management. Even discretionary managers are starting to bring in data scientists and machine learning experts.
Most attempts to apply AI so far have been in stock price forecasting. But risk managers are asking how the technology can be harnessed in their domain also. One area of exploration is the use of machine learning to replace traditional approaches to risk modelling.
Conventional risk models often treat markets as webs of essentially linear relationships. Each factor that contributes to risk gets a weighting – and those weightings don’t change. That’s a problem, as it tends to miss tail risks, according to Gareth Shepherd, managing partner at G Squared Capital, a London-based discretionary firm using machine learning to better understand idiosyncratic risk.
“The traditional approach equity research analysts take of using linear regression and bell curves to model idiosyncratic risk is a fairly antiquated tool.
It’s like putting a horizontal ruler on a spherical Earth and trying to measure it. It’s just a weird
thing to do,” he says.
Dario Villani, chief executive of machine learning hedge fund Duality Group, says current risk models fly in the face of the fact that assets are driven by elusive, shifting relationships, rather than fixed laws of risk and return. Villani is one of a group of quants who see machine learning as transformative, potentially unlocking the secrets of this non-linear behaviour.
In a non-linear machine learning model, the weighting would change over time, depending on a multitude of factors. For example, non-linear prepayment models for agency mortgage-backed securities built by MSCI depend on 30–100 variables that interact with each other differently depending on whether the loan is in or out of the money.
But do the new techniques harbour risks of their own? Yes, they do.
Models in general can go wrong by picking up on false patterns in data, or simply through being too hard to understand. Both faults are amplified many-fold by AI because the datasets are so much bigger and the algorithms themselves so much more complicated. BlackRock shelved some liquidity risk models built using neutral networks because it couldn’t understand their inner workings. These risks will require careful handling.
Data analysis
In other areas, though, intelligent machines will face fewer obstacles. The use of machine learning to automate data analysis is one way CROs might get closer to real-time risk management.
Darrel Yawitch, chief risk officer at Man Group, one of the world’s largest hedge funds, which is using AI in client portfolios for pattern recognition and anomaly detection, has said the last financial crisis might have been avoided had machine learning been available to analyse subprime mortgage pools data.
In this area, the robot march looks inevitable. As Jody Kochansky, head of BlackRock’s Aladdin risk management platform, which handles about $15 trillion in assets, or about 7% of the world’s financial assets, told Risk.net last year: “The world at large is automating the daylights out of everything, and financial services is no different.”
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact info@risk.net to find out more.
You are currently unable to copy this content. Please contact info@risk.net to find out more.
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Printing this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Copying this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@risk.net
More on Our take
FX-style crypto platforms could bridge gap with TradFi
Emergence of execution-only ECNs, prime brokers and clearing houses brings new confidence in crypto
Skew this: taking the computational burden off basket options
Dan Pirjol presents a snap formula for estimating implied volatility skew in an instant
Shhh, don’t tell: the struggle to keep skew under wraps
Liquidity recycling by clients has made it more difficult for banks to keep skews quiet
How a machine learning model closed a hidden FX arbitrage gap
MUFG Securities quant uses variational inference to control the mid volatility of options
The AOCI elephant in the DFAST room
After March’s banking crisis, Fed stress tests should adopt harsher and wider ranging rate scenarios
China needs an RMB liquidity absorber – HK might be the answer
Increasing HKMA’s CNH debt issuance could help cement renminbi’s role in financial markets
Into the quantiverse: real-world pricing goes arbitrage-free
QRM quants claim to have bridged divide across ‘multiverse’ of fixed-income models
A three-point turn in derivative design
Citibank quant’s triangle method allows information geometry to be applied to hedge structuring