メインコンテンツに移動

AI data could be tainted even as it’s being cleaned

Risk USA: Expert says even touching raw data could lead to loss of context

clean-window
Data cleansing efforts should be properly documented, says Capital One's Hanif

Companies cleaning the data they’re using for their machine learning models could unintentionally adulterate it in the process, one expert has said.

“Anytime you touch the data before it enters your algorithm, there is absolutely always the risk that it removes something that has contextual information, and you don’t know it yet,” said Zachary Hanif, principal machine learning engineer at Capital

コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。

これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe

現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to Risk.net? View our subscription options

無料メンバーシップの内容をお知りになりたいですか?ここをクリック

パスワードを表示
パスワードを非表示にする

Most read articles loading...

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

ログイン
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here