When it comes to correlation, cleaning is a chore that pays
Recent trends in research may help firms obtain reliable correlations from limited data
Correlations are some of the most basic pieces of information that help investors understand market moves and build portfolios. However, they lead to some of the most unwieldy estimation problems faced by portfolio managers today. As with many other issues in quantitative finance, it all comes down to a lack of data.
As the number of assets in a portfolio increases, building reliable correlations becomes difficult. For a large portfolio of 500 assets – for example, one that mirrors the S&P 500 index – one would need many years of data to obtain reliable correlations.
"When you try to estimate very large objects, because the object is very large, it would need super-large data sets, going back to the past centuries to be able to pin down the correlation matrix," says Jean-Philippe Bouchaud, chairman and chief scientist at Capital Fund Management in Paris. "[This] obviously makes no sense at all, because over centuries you would expect a lot of things to change."
Modelling using a limited amount of data means one ends up with a huge amount of noise in the estimated correlation matrix, which can lead to massive estimation errors. Portfolio managers have been attempting to tackle the problem for decades, and have tried to solve it through tweaks to the empirical correlation matrix built from observable data. However, that has resulted in both computational challenges and errors in the numbers produced.
Research on 'cleaning' correlation matrices has been picking up in recent times, with many papers published on the topic in the last five years. Most recently, Bouchaud, along with co-authors Joel Bun, a PhD student at Université Paris-Saclay at the Léonard de Vinci Pôle Universitaire, and Marc Potters, co-chief executive and head of research at Capital Fund Management, analysed a number of correlation matrix cleaning techniques and recommended the one they believe performs the best: a technique proposed by quants Olivier Ledoit and Sandrine Péché in 2011.
Its working involves what the authors call a "mathematical miracle", which starts with the empirical correlation matrix of the portfolio and aims to get as close as possible to the true correlation matrix – that is, one without the errors and which truly represents the relationship between assets.
Any correlation matrix can be decomposed into characteristic entities called Eigen values and Eigen vectors. Assuming one wouldn't know the direction of the true Eigen vectors – that is, by keeping them the same as the ones from the empirical correlation matrix – one can still tweak the Eigen values. In their 2011 paper, Ledoit and Péché calculated a formula that gives the overlap between the Eigen vectors of the empirical matrix and the true correlation matrix. This, in turn, gives the Eigen values of the true correlation matrix.
"The miracle comes from the fact that with this explicit formula, in the end, you are able to get a clean formula for the Eigen values which does not require you to know what you try to measure – that is, the true correlation matrix," explains Bouchaud. "As an intermediate step, you think you need this unknown correlation matrix to get the formula, but the miracle is that it cancels out because we are working with very large objects with large matrices. So there is this extension of the law of very large numbers."
Bouchaud and his co-authors tested the performance of their own extension of the Ledoit-Péché method, which accounts for a wider range of Eigen values than the original, against four other commonly used methods. That includes one of the more simple and commonly-used methods – the shrinkage technique proposed by Ledoit and Michael Wolf in 2003, which tries to pull the extreme coefficients in the matrix towards more central values. Even this method was found to be outperformed by the Ledoit-Péché extension, which gave the lowest realised risk among all five methods considered.
Using this method means that, as a rule of thumb, one would require only twice the number of data points as there are assets to get a reasonably good correlation matrix, Bouchaud argues.
The work raises the question of why it has taken so long for the industry to fix something as straightforward and fundamental as building a reliable correlation matrix out of limited asset returns data. Due to the challenges involved, others have settled for filling in missing returns using certain assumptions or data from time points that don't really match for different assets. The resulting correlation matrices are considered invalid because they do not satisfy an important property called positive semi-definiteness.
"The issue is we don't have deep theory behind these things in terms of what we should do when we are violating some of the basic assumptions in building these portfolios," says Eliott Noma, a managing director at Garrett Asset Management in New York.
By analysing existing methods for cleaning correlations and their drawbacks, Bouchaud and his co-authors are helping to bring this fundamental issue back into focus. That could bring lasting benefits for portfolio managers.
コンテンツを印刷またはコピーできるのは、有料の購読契約を結んでいるユーザー、または法人購読契約の一員であるユーザーのみです。
これらのオプションやその他の購読特典を利用するには、info@risk.net にお問い合わせいただくか、こちらの購読オプションをご覧ください: http://subscriptions.risk.net/subscribe
現在、このコンテンツを印刷することはできません。詳しくはinfo@risk.netまでお問い合わせください。
現在、このコンテンツをコピーすることはできません。詳しくはinfo@risk.netまでお問い合わせください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(ポイント2.4)に記載されているように、印刷は1部のみです。
追加の権利を購入したい場合は、info@risk.netまで電子メールでご連絡ください。
Copyright インフォプロ・デジタル・リミテッド.無断複写・転載を禁じます。
このコンテンツは、当社の記事ツールを使用して共有することができます。当社の利用規約、https://www.infopro-digital.com/terms-and-conditions/subscriptions/(第2.4項)に概説されているように、認定ユーザーは、個人的な使用のために資料のコピーを1部のみ作成することができます。また、2.5項の制限にも従わなければなりません。
追加権利の購入をご希望の場合は、info@risk.netまで電子メールでご連絡ください。
詳細はこちら リスク管理
多くの銀行が流動性ストレステストにおいてSVBの亡霊を無視している
ALMベンチマーキング調査において、大半の銀行では30日未満のストレス期間に焦点を当てた内部テストを実施しておりません。
Quant Finance Master’s Guide 2026
Risk.net’s guide to the world’s leading quant master’s programmes, with the top 25 schools ranked
ALM Benchmarking: explore the data
View interactive charts from Risk.net’s 46-bank study, covering ALM governance, balance-sheet strategy, stress-testing, technology and regulation
スタッフ、サバイバル・デイズ、モデル――銀行がALMで分かれる点
流動性リスクと金利リスクは銀行業と同じく古くから存在する課題ですが、当社のベンチマーク調査対象となった46行では、それらを管理する手法がそれぞれ異なっております。
CMEグループは米国債清算業務の認可取得後、顧客獲得競争に直面している
一部のメンバーは2026年の開始日にコミットする準備が整っていません。一方、競合するFICCはサービスを強化しています。
AI and the next era of Apac compliance
How Apac compliance leaders are preparing for the next era of AI-driven oversight
責任あるAIは、原則と同様に利益についても考慮すべき
ある企業が、ガバナンスを損なうことなく、融資処理時間を短縮し、不正検知を改善した方法
オペリスクデータ:NSEにおける低遅延、高コスト
また、ブラムバット氏の詐欺事件がブラックロックを直撃、JPモルガンは疑わしい取引の売却に遅れ。ORXニュースのデータより