Paper of the year: Bakhodir Ergashev, Stefan Mittnik and Evan Sekeris

Paper focuses on dealing with sparse data

rmorrorria014-winner-2-logo

Paper: A Bayesian Approach to Extreme Value Estimation in Operational Risk Modelling

Scarcity of data is the ever-present bugbear of everyone who deals with operational risk – in particular the shortage of relevant data points in the tails of loss distributions, which are not only crucial for planning responses to extreme and business-threatening events, but also important in operational risk modelling and capital calculations.

The tail is critical: observed operational risk losses fall into a

Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.

To access these options, along with all other subscription benefits, please contact [email protected] or view our subscription options here: http://subscriptions.risk.net/subscribe

You are currently unable to copy this content. Please contact [email protected] to find out more.

To continue reading...

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here: