
SSgA may implement genetic programming investment model
Genetic programming involves telling a computer system what needs to be done, without telling it how to do it. It is part of the field of evolutionary computation begun in the late 1970s, in which programs were developed via simulation of the natural processes of selection, mutation and reproduction.
Evolutionary computation depends on a better-than-random process of combining algorithm and program elements to arrive at the ‘unjustified step’, or the flash of insight that marks all true human invention.
SSgA portfolio managers work with the advanced research team to determine which investment factors to include in what Foley calls the “factor soup” from which all evolution proceeds. In the case of genetically programming the US stock selection model, for example, various accounting, growth, value and momentum factors were included in the soup. The measure of fitness for programs in each generation is a weighted combination of return and information ratio, details of which Foley refused to comment. SSgA then finds the optimal solution when the average fitness of new populations and the highest fitness members of the population no longer improve, but tend to converge.
While the most prevalent technique used by portfolio managers, some market observers have questioned the value of factor techniques, even with the added sophistication of genetic programming for optimisation. The concern stems from the inherent instability of the financial market environment. There is a danger that when factors influencing financial markets rapidly change, as happened at the end of the 1990s technology bubble, factor-driven portfolio models may fail to pick up the new influences.
Foley’s team has invested the equivalent of five person years into the project, and has been running the evolutionary processes on a Unix system, often overnight. Foley said the processing expense is significant, but networking even 10 high-power desktops could generate good results.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact info@risk.net to find out more.
You are currently unable to copy this content. Please contact info@risk.net to find out more.
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Printing this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Copying this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@risk.net
More on Technology
Risk applications and the cloud: driving better value and performance from key risk management architecture
Today's financial services organisations are increasingly looking to move their financial risk management applications to the cloud. But, according to a recent survey by Risk.net and SS&C Algorithmics, many risk professionals believe there is room for…
Machine learning models: the validation challenge
Machine learning models are seeing increasing demand across the capital markets spectrum. But how can firms improve their chances of gaining internal and regulatory approval for these type of models?
Banks strive for machine learning at quantum speed
Embryonic work on quantum neural networks raises hope of faster, more accurate models
Big banks seek solace in quantum-proof encryption
Barclays, JP Morgan and SocGen act to counter threat from next generation of computing
Facing the future: the growth of automation in Asia‑Pacific fixed income trading
How can automation improve fixed income trading strategies and best execution? In a recent Asia Risk webinar, in partnership with Tradeweb, a panel of market experts discussed the outlook for automation in the trading space
Moonshots and machines: can AI solve the problems of fincrime?
New technologies such as artificial intelligence (AI) and machine learning promise much in the battle against financial crime, but where are these solutions best deployed? A panel of anti-money laundering and analytics professionals convened for a Risk…
Next-generation technologies and the future of trading
At a Risk.net webinar in association with capital markets technology provider Numerix, panellists discuss the potential for increased adoption of the public cloud to boost investment performance, its impact on risk management and overcoming barriers to…