Going downturn

In a background note by the Basel Committee on Banking Supervision (2004) on loss given default (LGD), the Committee seeks input from the financial industry on defining and quantifying 'downturn' LGD. The main reason for this requirement is that the Vasicek model (Vasicek (2002)) used in the Basel Accord does not have systematic correlation between probability of default (PD) and LGD and, to compensate for this deficiency, downturn LGD estimates are required to be used as an input to the model. The idea here is that a credit risk model with systematic correlation between PD and LGD using long-run LGD inputs should give comparable capital to a credit risk model without correlated PD and LGD using downturn LGD inputs. One suggestion by the Basel Committee to help quantify downturn LGD is to establish a functional relationship between long-run and downturn LGD. Recently, Miu & Ozdemir (2006) used Monte Carlo to specifically tabulate such a relationship in terms of the 'LGD mark-up' required to achieve downturn from long-run LGD.

In this article, we extend the work by Miu & Ozdemir to develop an analytical relationship between long-run and downturn LGD so that credit risk is not overestimated or underestimated in the Vasicek model. We do this by introducing another fully granular credit risk model that contains systematic dependence between PD and LGD. This model is calibrated to historical default and recovery rate data using the Merton model for firm asset return, and recoveries are modelled with a three-parameter lognormal distribution for the value of the assets of the creditor, which may include secured or unsecured assets of any priority or seniority. The choice of a lognormal distribution is first introduced in Pykhtin (2003), and is a more natural choice for quantities that remain positive compared with the Gaussian distribution used by Frye (2000). To determine downturn LGD, we then solve for the downturn LGD input in the Vasicek model so that it gives identical credit risk capital to the model with systematically correlated PD and LGD. We also show that, to correctly compensate for the lack of systematic correlation between PD and LGD, the Vasicek model requires two.

Click Here To Download PDF

Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.

To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe

You are currently unable to copy this content. Please contact info@risk.net to find out more.

Credit risk & modelling – Special report 2021

This Risk special report provides an insight on the challenges facing banks in measuring and mitigating credit risk in the current environment, and the strategies they are deploying to adapt to a more stringent regulatory approach.

The wild world of credit models

The Covid-19 pandemic has induced a kind of schizophrenia in loan-loss models. When the pandemic hit, banks overprovisioned for credit losses on the assumption that the economy would head south. But when government stimulus packages put wads of cash in…

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here