
Model risk chiefs warn on machine learning bias
ML model outputs open to “potential bias sitting in your datasets”, says RBS model risk head

Banks’ rapid adoption of machine learning techniques to augment the modelling of everything from credit card approvals to suspicious transactions has left model managers scrambling to make sure their risk frameworks can accommodate them, senior executives are warning.
Banks hope models that make use of machine learning (ML) – a subset of artificial intelligence that relies on automation to create accurate predictions from large, dense datasets – can dramatically speed up manually intensive
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact [email protected] or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact [email protected] to find out more.
You are currently unable to copy this content. Please contact [email protected] to find out more.
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Printing this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email [email protected]
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Copying this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email [email protected]
More on Risk management
Risk management
Union beckons for the three quant tribes
Studies may be deferred, but future for grads is bright, argues UBS’s Gordon Lee
Receive this by email