‘Hot-start’ initialisation of the Heston model

Multi-factor models usually have hidden variables – for example, stochastic volatility – with unknown spot values. This suggests the initial value of such variables is actually random, with a distribution generated through stochastic evolution before formal modelling starts. Serguei Mechkov applies this approach to the Heston model and demonstrates its significant effect on the implied volatility smile




A logical way of making a model more closely fit observed behaviour is to augment its dimensions by adding a hidden process that somehow affects the evolution of the principal observable value. The complete model specification then acquires the parameters of the hidden process and its possible correlation with the principal process. This also requires a description of how the hidden process starts, which is the main subject of this paper.

The very fact the

Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.

To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe

You are currently unable to copy this content. Please contact info@risk.net to find out more.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to Risk.net? View our subscription options

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here