Skip to main content

Journal of Risk Model Validation

Risk.net

The role of personal credit in small business risk assessment: a machine learning approach

Zilong Liu and Hongyan Liang

  • Integrating personal credit data of small business owners with business-level variables significantly improves default prediction accuracy, raising AUC from ~0.78 to ~0.83.
  • Machine learning models outperform traditional approaches, effectively capturing nonlinear relationships in combined business and personal credit data.
  • Personal credit attributes such as credit score, outstanding balances and recent inquiries emerge as some of the most influential predictors of small business default risk.
  • Findings highlight the importance of linking personal and business finances and underscore the value of alternative data for robust, regulatorily sound risk model validation.

Accurately predicting default risk among small businesses is critical for lenders and policy makers. However, traditional credit risk models often rely on extensive financial statements that many small enterprises lack. This study explores the value of integrating the personal credit bureau data of business owners, along with business-level and tradeline variables, within a machine learning framework to improve default prediction. Using a large data set from the Gies Consumer and Small Business Credit Panel, our baseline models relying solely on fundamental business attributes achieve an area under the receiver operating characteristic curve (AUROC) of approximately 0.78. Incorporating business tradeline information (such as active accounts and delinquency patterns) raises performance only slightly (AUROC ≈ 0:79). In contrast, adding personal credit features substantially boosts accuracy, pushing the best-performing gradient boosting models (XGBoost, Light- GBM and CatBoost) above 0.83. Feature importance analyses underscore the intertwined nature of business and owner finances: variables capturing personal credit scores, outstanding balances and recent inquiries rank among the strongest predictors, alongside measures of business debt (eg, Uniform Commercial Code (UCC) filings and open tradeline balances). These findings reveal that personal credit factors can fill critical information gaps when formal business records are scant, thereby strengthening credit risk assessments and enhancing lending decisions in the small business sector. In addition, our results highlight the critical importance of validating risk models using alternative data sources, ensuring greater robustness and reliability in predicting small business defaults.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to Risk.net? View our subscription options

Want to know what’s included in our free membership? Click here

Show password
Hide password

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here