Journal of Risk

Risk.net

Numerically stable computation of Credit Risk+

Hermann Haaf, Oliver Reiß, John Schoenmakers

ABSTRACT

The CreditRisk+ model launched by Credit Suisse First Boston in 1997 is widely used by practitioners in the banking sector as a simple means for the quantification of credit risk, primarily of the loan book. We present an alternative numerical recursion scheme for CreditRisk+, equivalent to an algorithm recently proposed by Giese, that is based on well-known expansions of the logarithm and the exponential of a power series. We show that it is advantageous for the Panjer recursion advocated in the original CreditRisk+ document, in that it is numerically stable. The crucial stability arguments are explained in detail. We explain how to apply the suggested recursion scheme to incorporate stochastic exposures into the CreditRisk+ model as introduced by Tasche (2004). Finally, the computational complexity of the resulting algorithm is stated and compared with other methods for computing the CreditRisk+ loss distribution

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to Risk.net? View our subscription options

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here