Journal of Risk Model Validation

Benchmarking default prediction models: pitfalls and remedies in model validation

Roger M. Stein


We discuss the components of validating credit default models with a focus on potential challenges to making inferences from validation under realworld conditions. We structure the discussion in terms of: (a) the quantities of interest that may be measured (calibration and power) and how they can result in misleading conclusions if not taken in context; (b) a methodology for measuring these quantities that is robust to non-stationarity both in terms of historical time periods and in terms of sample firm composition; and (c) techniques that aid in the interpretation of the results of such tests. The approaches we advocate provide means for controlling for and understanding sample selection and variability. These effects can in some cases be severe and we present some empirical examples that highlight instances where they are and can thus compromise conclusions drawn from validation tests.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to View our subscription options

You need to sign in to use this feature. If you don’t have a account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here