Journal of Operational Risk

Disentangling frequency models

Erika Gomes-Gonçalves and Henryk Gzyl


An interesting problem arises when describing the frequency of losses in a given time period, due to the fact that the data collection procedure may not distinguish subpopulations of risk sources. It consists of devising methods to determine the appropriate model for the frequency of losses due to each source of risk. When considering frequency models of the type (a, b, 0) there are several possible ways to disentangle a mixture of distributions. Here the authors present an application of the expectation-maximization algorithm and the k-means technique to provide a solution to the problem when the number of sources of risk is known.


Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to View our subscription options

You need to sign in to use this feature. If you don’t have a account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here