Journal of Computational Finance

Adaptive control variates for pricing multi-dimensional American options

Samuel M. T. Ehrlichman, Shane G. Henderson


We explore a class of control variates for the American option pricing problem. We construct the control variates by using multivariate adaptive linear regression splines to approximate the option’s value function at each time step; the resulting approximate value functions are then combined to construct a martingale that approximates a “perfect” control variate. We demonstrate that significant variance reduction is possible even in a highdimensional setting. Moreover, the technique is applicable to a wide range of both option payoff structures and assumptions about the underlying risk-neutral market dynamics. The only restriction is that one must be able to compute certain one-step conditional expectations of the individual underlying random variables.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to View our subscription options

You need to sign in to use this feature. If you don’t have a account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here