AQR’s Cliff Asness: ‘machine learning worries me’

Leading quant cautious on machine learning’s use with limited data

Asness: “Machine learning worries me. We’ve been handed a H-bomb instead of an A-bomb.”

Cliff Asness, chief investment officer and founder of quantitative hedge fund AQR Capital Management, has reservations about the value of machine learning, particularly in cases where limited data is available.

Speaking at the Ritholtz Wealth Management and the Information Management Network’s Evidence-Based Investing Conference in New York on November 2, Asness said there was a clear split between the young and older generations of quants at AQR as to whether machine learning was the paradigm

Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.

To access these options, along with all other subscription benefits, please contact or view our subscription options here:

You are currently unable to copy this content. Please contact to find out more.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to View our subscription options

If you already have an account, please sign in here.


Want to know what’s included in our free registration? Click here

This address will be used to create your account

Asset-liability management: Special report 2023

There is nothing new about the dynamics behind the asset-liability management (ALM) banking crisis of earlier this year: maturity transformation, liquidity risk and interest rate risk are at the heart of the traditional banking business model. But these…

Chartis RiskTech Buyside50

The second annual RiskTech Buyside50 ranking from Chartis Research outlines notable trends in the buy side and ranks the key players operating within it, focusing on solutions, industry segments and the scope and breadth of investment lifecycle…

You need to sign in to use this feature. If you don’t have a account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here