Machine learning for trading

Gordon Ritter applies reinforcement learning to dynamic trading strategies with market impact

CLICK HERE TO VIEW THE PDF

In multiperiod trading with realistic market impact, determining the dynamic trading strategy that optimises the expected utility of final wealth can be difficult. Gordon Ritter shows that, with an appropriate choice of reward function, reinforcement learning techniques (specifically Q-learning) can successfully handle the risk-averse case

In this article, we show how machine learning can be applied to the problem of discovering and implementing dynamic trading

Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.

To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe

You are currently unable to copy this content. Please contact info@risk.net to find out more.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to Risk.net? View our subscription options

If you already have an account, please sign in here.

Asset-liability management: Special report 2023

There is nothing new about the dynamics behind the asset-liability management (ALM) banking crisis of earlier this year: maturity transformation, liquidity risk and interest rate risk are at the heart of the traditional banking business model. But these…

Chartis RiskTech Buyside50

The second annual RiskTech Buyside50 ranking from Chartis Research outlines notable trends in the buy side and ranks the key players operating within it, focusing on solutions, industry segments and the scope and breadth of investment lifecycle…

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here