Journal of Risk

Risk.net

Bias and consistency of the maximum Sharpe ratio

Ross A. Maller, Robert B. Durand, Peter T. Lee

ABSTRACT

We show that the maximum Sharpe ratio obtained via the Markowitz optimization procedure from a sample of returns on a number of risky assets is, under commonly satisfied assumptions, biased upwards for the population value. Thus investment advice, decisions and assessments based on the estimated Sharpe ratio will be overly optimistic. The bias in the estimator is shown theoretically and illustrated using a data set of Spiders and iShares. We obtain bounds on the difference between the sample maximum Sharpe ratio and its population counterpart and show that the sample estimator is consistent for the population value; thus the bias disappears asymptotically under some reasonable assumptions. However, the bias can be significant in finite samples and can persist even in very large samples. We demonstrate this with simulations based on portfolios formed from normally and t-distributed returns. As expected, the over-optimistic risk–return tradeoff predicted by the procedure is not reflected in corresponding good out-of-sample portfolio performance of the Spiders and iShares.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to Risk.net? View our subscription options

If you already have an account, please sign in here.

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here: