Journal of Risk

Risk estimation using the multivariate normal inverse Gaussian distribution

Kjersti Aas, Ingrid Hobæk Haff and Xeni K. Dimakos


Appropriate modeling of time-varying dependencies is very important for quantifying financial risk, such as the risk associated with a portfolio of financial assets. Most of the papers analyzing financial returns have focused on the univariate case. The few that are concerned with their multivariate extensions are mainly based on the multivariate normal assumption. The idea of this paper is to use the multivariate normal inverse Gaussian (MNIG) distribution as the conditional distribution for a multivariate GARCH model. The MNIG distribution belongs to a very flexible family of distributions that captures heavy tails and skewness in the distribution of individual stock returns, as well as the asymmetry in the dependence between stocks observed in financial time series data. The usefulness of the MNIG GARCH model is highlighted through a value-at-risk (VAR) application on a portfolio of European, American and Japanese equities. Backtesting shows that for a one-day holding period this model outperforms a Gaussian GARCH model and a Student’s t GARCH model. Moreover, it is slightly better than a skew Student’s t GARCH model.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to View our subscription options

If you already have an account, please sign in here.

You need to sign in to use this feature. If you don’t have a account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here