Journal of Operational Risk

Risk.net

A simulation comparison of aggregation periods for estimating correlations within operational loss data

Kevin Panman, Leendert Haasbroek and Willem Pieters

  • For operational losses, the correlation values of aggregate losses do not rely heavily on the length of the aggregation period.
  • Monthly, quarterly or annually aggregated losses can therefore be used for estimating correlations.
  • Shorter aggregation periods increase the number of aggregate losses which in turn leads to less volatile correlation estimates and ultimately less volatile capital estimates.

ABSTRACT

We investigate the differences in the values of correlations based on different aggregation periods of time series loss data. The aggregation periods considered for this study were annual, quarterly and monthly, ie, the losses were binned in one year, one quarter and one month buckets, respectively. We conducted a simulation study in order to cover a wide spectrum of frequencies (sample sizes), severity distributions and dependencies between the severities, choosing the parameters of the simulation study to obtain severity and frequency distributions popular in operational risk loss modeling. Our main conclusion is that the difference in values of the correlation coefficients calculated from aggregate loss severities only becomes material when the inherent correlation in the loss-generating process exceeds approximately 0.5. From a risk management perspective, where annual aggregation is desired due to loss horizons typically being annual, this result implies that aggregation periods shorter than annual can be used, which will increase the number of observations to improve the stability of correlation estimates, and the diversification benefit due to estimating correlation values using a shorter aggregation period will not result in a material misstatement of the diversification benefit, since the differences in the values of the correlations are minimal.

 

To continue reading...

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here: