Journal of Credit Risk

Evaluating the performance of Static versus Dynamic models of credit default: evidence from long-term Small Business Administration-guarenteed loans

Dennis Glennon, Peter Nigro


The financial crisis exposed the limitations of credit risk models to risk managers, financial regulators, investors and rating agencies. We compare the performance of conventional static-scoring techniques employed in practice with dynamic survival-time models to predict dollar losses on a portfolio of smallbusiness loans.We find that the dynamic models consistently generate more accurate dollar-loss forecasts over multiple time periods and performance horizons. Our results support the hypothesis that seasoning is a key factor in the development of accurate loss forecasts for longer-term amortizing loans (eg, small-business and mortgage loans). Furthermore, our results suggest that banks consider developing capital adequacy, loan-loss provisioning and securitized loan valuation models with a dynamic sample and model design.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to View our subscription options

You need to sign in to use this feature. If you don’t have a account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here