Journal of Computational Finance

Second-order Monte Carlo sensitivities in linear or constant time

Roberto Daluiso

This paper considers the problem of efficiently computing the full matrix of second-order sensitivities of a Monte Carlo price when the number of inputs is large. Specifically, the paper analyzes and compares methods with run times of at most O(NT), where N is the dimension of the input and T is the time required to compute the price. Since none of the alternatives from previous literature appears to be satisfactory in all settings, we propose two original methods: the first method is based on differentiation in a distributional sense, while the second method leverages a functional relation between first- and second-order derivatives. The former shows excellent generality and computational times to achieve a given target accuracy. The latter is by far the most effective in at least one relevant example and has theoretical interest in that it is the first practical estimator of the full Hessian whose complexity, as a multiple of that of the only-price implementation, does not grow with the dimension of the problem.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to View our subscription options

You need to sign in to use this feature. If you don’t have a account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here