Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger

A reduced basis method for parabolic partial differential equations with parameter functions and application to option pricing
Need to know
- A reduced Basis space-time variational approach for parametric parabolic partial differential equations having coefficient parameters and a variable initial condition is introduced.
- Feasibility and efficiency are demonstrated.
Abstract
ABSTRACT
We consider the Heston model as an example of a parameterized parabolic partial differential equation. A space-time variational formulation is derived that allows for parameters in the coefficients (for calibration) and enables us to choose the initial condition (for option pricing) as a parameter function. A corresponding discretization in space and time for the initial condition are introduced. Finally, we present a novel reduced basis method that is able to use the initial condition of the parabolic partial differential equation as a parameter (function). The corresponding numerical results are shown.
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Printing this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Copying this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@risk.net