Journal of Computational Finance

Application of the improved fast Gauss transform to option pricing under jump-diffusion processes

Takayuki Sakuma and Yuji Yamada


Efficient kernel summation is an active research topic in machine learning and computational physics. Fast multipole methods (FMMs) in particular are known as efficient computational methods in these fields, but they have not gained much attention in computational finance. In this paper,we apply the improved fast Gauss transform (IFGT), a version of an FMM, to the computation of European-type option prices under Merton's jump-diffusion model. IFGT is applied to computing the nonlocal integral terms in partial integrodifferential equations, and our results indicate that IFGT is useful for the fast computation of option pricing under this model.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to View our subscription options

If you already have an account, please sign in here.

You need to sign in to use this feature. If you don’t have a account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here