Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Numerical analysis of Monte Carlo evaluation of Greeks by finite differences
Grigori N. Milstein, Michael V. Tretyakov
Abstract
ABSTRACT
An error analysis of approximation of deltas (derivatives of the solution to the Cauchy problem for parabolic equations) by finite differences is given, taking into account that the value of the hedging portfolio itself (the solution of the problem) is evaluated using weak-sense numerical integration of the corresponding system of stochastic differential equations together with the Monte Carlo technique. It is shown that finite differences are effective when the method of dependent realizations is exploited in the Monte Carlo simulations. Evaluation of other Greeks is also considered. Results of numerical experiments, including those with Heston stochastic volatility model, are presented.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net