Journal of Computational Finance

Pricing in three-factor models using icosahedral lattices

Lynda A. McCarthy, Nick J. Webber


In models with three or more factors it may be difficult to value path-dependent Bermudan options by finite-difference or Monte Carlo methods. We describe a lattice method for three-factor models based on icosahedral branching that samples the joint distribution of the underlying state variables more uniformly than standard lattice schemes and does not oversample the tails. Two versions are presented: a true icosahedral branching suitable for non-Markovian processes, and a recombining oblate icosahedral branching suitable for Markov processes. It is found that the method is considerably faster than simple branching schemes. In the non-recombining lattice we show how time steps can be freely chosen while we are still able to adjust the location of nodes at the terminal time according to a low-discrepancy sequence to avoid clustering. Illustrating the method on three-factor affine and Heath–Jarrow–Morton interest rate models we find that when certain conditions are met the icosahedral lattice can value options with acceptable accuracy and speed.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to View our subscription options

If you already have an account, please sign in here.

You need to sign in to use this feature. If you don’t have a account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here