Journal of Computational Finance

Cap and swaption approximations in Libor market models with jumps

Paul Glasserman, Nicolas Merener


This paper develops formulas for pricing caps and swaptions in Libor market models with jumps. The arbitrage-free dynamics of this class of models were characterized in Glasserman and Kou (2003) in a framework allowing for very general jump processes. For computational purposes, it is convenient to model jump times as Poisson processes; however, the Poisson property is not preserved under the changes of measure commonly used to derive prices in the Libor market model framework. In particular, jumps cannot be Poisson under both a forward measure and the spot measure, and this complicates pricing. To develop pricing formulas, we approximate the dynamics of a forward rate or swap rate using a scalar jump-diffusion process with time-varying parameters. We develop an exact formula for the price of an option on this jump-diffusion through explicit inversion of a Fourier transform. We then use this formula to price caps and swaptions by choosing the parameters of the scalar diffusion to approximate the arbitrage-free dynamics of the underlying forward or swap rate. We apply this method to two classes of models: one in which the jumps in all forward rates are Poisson under the spot measure, and one in which the jumps in each forward rate are Poisson under its associated forward measure. Numerical examples demonstrate the accuracy of the approximations.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to View our subscription options

You need to sign in to use this feature. If you don’t have a account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here