Journal of Computational Finance

Risk.net

Sampling Student's T distribution – use of the inverse cumulative distribution function

William T. Shaw

ABSTRACT

With the current interest in copula methods, and fat-tailed or other non-normal distributions, it is appropriate to investigate technologies for managing marginal distributions of interest. We explore “Student’s” T distribution, survey its simulation, and present some new techniques for simulation. In particular, for a given real (not necessarily integer) value n of the number of degrees of freedom, we give a pair of power series approximations for the inverse, F−1 n , of the cumulative distribution function (CDF), Fn.We also give some simple and very fast exact and iterative techniques for defining this function when n is an even integer, based on the observation that for such cases the calculation of F−1 n amounts to the solution of a reduced-form polynomial equation of degree n − 1. We also explain the use of Cornish–Fisher expansions to define the inverse CDF as the composition of the inverse CDF for the normal case with a simple polynomial map. The methods presented are well adapted for use with copula and quasi-Monte-Carlo techniques.

To continue reading...

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an indvidual account here: