Journal of Computational Finance

A simple discretization scheme for nonnegative diffusion processes with applications to option pricing.

Chantal Labbé, Bruno Rémillard, Jean-François Renaud


A discretization scheme for nonnegative diffusion processes is proposed and the convergence of the corresponding sequence of approximate processes is proved using the martingale problem framework. Motivations for this scheme typically come from finance, especially for path-dependent option pricing. The scheme is simple: one only needs to find a nonnegative distribution whose mean and variance satisfy a simple condition to apply it. Then, for virtually any (path-dependent) payout, Monte Carlo option prices obtained from this scheme will converge to the theoretical price. Examples of models and diffusion processes for which the scheme applies are provided.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to View our subscription options

If you already have an account, please sign in here.

You need to sign in to use this feature. If you don’t have a account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here: