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Board Options Exchange (CBOE) Vol-
atility Index (Vix) measures the implied 

volatility of S&P 500 stock index options with a maturity of 30 
days. In a broad sense, the Vix represents the market expectation 
of the annualised at-the-money (ATM) implied volatility over the 
next 30-day period. The Vix spot value is calculated by the CBOE 
minute-to-minute using real-time bid/ask market quotes of S&P 
500 index (SPX) options with nearby and second nearby maturi-
ties and applying the multiplier of $100.

The exchange-listed Vix-based derivatives include futures con-
tracts, which began trading in 2004, and call and put options on 
the Vix, which began trading in February 2006. The final settle-
ment date of the Vix futures contract is the third Wednesday of 
each month. Typically, there are listed futures contracts with a 
settlement date up to six near-term months and a few longer-term 
contracts. The underlying of the Vix call and put options is the 
Vix spot value observed on the option expiry date, which is speci-
fied in the same way as the settlement day for futures contracts. 
The Vix options are of European exercise style.

According to the CBOE Futures Exchange press release on July 
11, 2007, in June 2007 the average daily volume of Vix options 
was 95,283 contracts, making the Vix the second most actively 
traded index and the fifth most actively traded product on the 
CBOE. On July 11, open interest in Vix options stood at 
1,845,820 contracts (1,324,775 calls and 521,045 puts). In the 
same month, the Vix futures totalled 78,578 contracts traded, 
with open interest at 49,894 contracts at the end of June.

There are a number of reasons for trading in the volatility 
futures. The main one is that since options on the Vix derive their 

values from the implied volatility of the S&P 500 index, they are 
attractive for investors, who want to get exposure to the volatility 
of the S&P 500 without taking direct positions in the index and 
without the need to delta-hedge their portfolios. In addition, for 
equity portfolio insurance it might be less expensive to hedge 
exposure to the S&P 500 index by taking a position in out-of-the-
money call options on the Vix rather than buying out-of-the-
money puts on the S&P 500 index.

Given the growing popularity of contracts deriving their values 
from the implied volatilities of major indexes, including S&P 
500, Dax, Eurostoxx 50 and Nasdaq, it is important to develop a 
dynamic model for these types of product, and analyse the model 
implied distributions and hedging strategies.

Empirical analysis of the Vix within an econometric frame-
work, as well as general discussion of Vix futures, can be found in 
recent papers by Psychoyios & Skiadopoulos (2006), Dotsis, Psy-
choyios & Skiadopoulos (2007), Zhang & Zhu (2006) and Zhu 
& Zhang (2007). Although the first two of these papers do con-
sider jumps in the volatility index, which are extremely important 
to fit the skew observed in Vix options, they treat the Vix spot 
value as a stand-alone process, which makes it difficult to deal 
with Vix and other volatility products on the S&P 500 index in a 
consistent way.

In this article, we consider the unified pricing of volatility prod-
ucts and options on Vix products and assume that the variance of 
returns on the S&P 500 is driven by square-root diffusion (Heston, 
1993) with variance jumps and time-dependent parameters. Since 
model parameters can be calibrated using market data on Vix prod-
ucts and/or S&P 500 products, including vanilla options and vari-
ance swaps, this model can also serve for the relative-value analysis 
and cross-hedging of different volatility products.

Vix options implied volatility

The first model to price options on an implied volatility index was 
originated by Whaley (1993), who applied Black’s formula (1976) 
to value the call option on the futures contract. Grünblicher & 
Longstaff (1996) applied the mean-reverting square-root process 
for the implied volatility index. In this section, we follow Whaley 
and apply Black’s formula to price the call option on the Vix 
futures:
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where t is the current valuation time, C(t, T, F, K) stands for the 
value of the call option with expiry time T and strike K, F(t, T) is 
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the futures price with expiry time T, DF(t, T) is the discount fac-
tor applied to time T, and  is the volatility of the futures price, 
which can be used for quoting or parametrisation of the market 
price of the call option.

Thus, given the market prices of the Vix options along with the 
prices of the Vix futures, we can infer their implied volatilities by 
means of formula (1). Since losses in the S&P 500 index are typi-
cally followed by high levels of the Vix, out-of-the-money call 
options on the Vix provide protection against a market crash. As 
a result, the call option writer takes on risk and charges compen-
sation for taking this risk, in a similar way to when a writer of an 
out-of-the-money put option on the S&P 500 index charges extra 
compensation for their risk. Thus, in contrast to the downward 
sloping implied volatility skew (negative skew) observed in the 
S&P 500 put options, the skew observed in Vix call options has 
an upward sloping skew (positive skew). The term structure of the 
corresponding implied skews in Vix call options observed on July 
25, 2007 is shown in figure 1.

The weakness of the Black and Grünblicher & Longstaff 
approaches to Vix options pricing is that these models are separated 
from the actual evolution of the S&P 500 index volatility and, as a 
result, they can mis-specify risks of Vix futures and calls, especially 
the volatility-of-volatility risk. Since Vix futures are a non-linear 
function of the expected future realised variance, they have their 
own time-decay and volatility-of-volatility risk that needs to be 
taken into account by hedging options on the Vix.

The dynamic model

To model the positive skew observed in implied volatilities of Vix 
options, we can follow two routes. First, we can assume that the 
volatility of the Vix dynamics is stochastic and positively corre-
lated with the Vix dynamics. This is equivalent to introducing a 
model for the S&P 500 index dynamics with stochastic volatility 
and stochastic volatility of volatility that is positively correlated to 
the S&P 500 volatility dynamics and negatively correlated to the 
S&P 500 index dynamics. This model will produce the Vix skew 
by implying that low values of the S&P 500 index are followed by 
high values of its volatility and volatility of volatility. Ren, Madan 
& Qian Qian (2007) suggested a similar approach based on spec-
ifying the volatility-of-volatility parameter to be a local function 
of time, the S&P 500 spot value and its stochastic variance.

Second, we can introduce a jump process in the dynamics of the 
stochastic volatility of the S&P 500 index. This model will imply 
the Vix options skew by assigning higher probabilities to larger val-
ues of the Vix in the short term as a consequence of anticipating big 
jumps in the dynamics of the S&P 500 index volatility.

We choose the second option because, in our opinion, it is more 
financially justifiable and empirically observable, and, since this 
model results in a two-dimensional pricing problem, it can be 
handled by both analytical and numerical methods.

To solve the pricing problem for a variety of volatility products, 
we will consider the joint dynamics of the asset price S(t), its vari-
ance V(t) and its realised variance I(t). To model the positive skew 
observed in the Vix options, we augment the variance dynamics 
with a jump process. The asset-price jumps, or more general 
Duffie, Pan & Singleton (2000) model, can easily be accommo-
dated in our framework, but for the sake of brevity we omit price 
jumps by noting that jumps in the S&P 500 index alone cannot 
explain the variance skew observed in the Vix options. This is 
because, as can be seen from formula (10), the Vix futures dynam-
ics is driven by the asset variance and not by the dynamics of its 
realised variance.
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We finally note that, since hedging of Vix options is typically 
done with trading in Vix futures contracts, the pricing model 
needs to be consistent with the term structure of Vix futures. As a 
result, we assume that some of the model parameters are time-
dependent in order to reproduce term-structure effects observed 
in market prices of Vix futures.

Specifically, we model the dynamics of these variables under 
the pricing measure Q using the square-root stochastic vari-
ance model:

dS t r t d t S t dt t V t S t dW s t ,

S 0 S

dV t 1 V t dt V t dW v t JdN t ,

V 0 1

dI t 2 t V t dt,
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where r(t) and d(t) are the deterministic risk-free interest and div-
idend rates, respectively, (t) is the deterministic at-the-money 
volatility,  is the mean-reverting rate,  is volatility of volatility, 
W s(t) and W v(t) are correlated Wiener processes with constant 
correlation , N(t) is the Poisson process with intensity , and J is 
an exponentially distributed random jump with mean size  and 
probability density function:

J
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The dynamics for the asset realised variance I(t) is derived by the 
augmentation principle developed by Lipton (2001).

Here, (t) is the deterministic level of the at-the-money vola-
tilities and V(t) is the variance process scaled to unity. We assume 
that (t) is piece-wise constant with local parameters chosen to 
match the term structure of Vix futures.

Now we introduce the expected values of the realised variance, 
I
_
(t, T), at time T as follows:
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where F(t) is the information set available at time t, and at time t
= 0 we obtain:
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Thus, given the values of mean-reversion parameters  and jump 
parameters  and , we fit the term structure of 2(t) to repro-
duce the term structure of the Vix futures. If, in addition, we 
want to fit the term structures of the at-the-money volatilities of 
SPX or Vix options, we introduce the term structure of param-
eters  and .

To build efficient analytics, we derive the joint transition density 
(Green) function, denoted by G(t, T, X, X , V, V , I, I ), of the joint 
evolution of the log of the S&P 500 index, X(t) = ln S(t), its vari-
ance, V(t), and its realised variance, I(t), and use it to price and cali-
brate vanilla options on the S&P 500 index, products on its implied 
and realised variance, along with contracts on the Vix.
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, R). Following the derivation outlined 

in Sepp (2007), we calculate the value function U(t, X, V, I) of 
the contract with payout function u(X, V, I) at maturity time T
by inversion:
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R Ĝ t,T ,X , ,V , , I , û , , d Id I d I
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where:

û , , e X V I u X ,V , I dX dV dI (6)

and the solution to G
^
 is given by formula (17) in Appendix I.

Formula (5) along with (17) is one of our key results, which gen-
eralises the methodology proposed by Lipton (2002) for pricing 
equity options, and allows us to price European-style vanilla and 
volatility options jointly. In the one- (two-) dimensional case, for-
mula (5) reduces to one-(two-) dimensional integrals. It is also pos-
sible to extend formula (5) to cover forward-start vanilla options, 
which are in fact volatility products, and forward-start volatility 
options. Numerical inversion of pricing formula (5) is achieved 
with standard fast Fourier transform and quadrature methods.

The dynamics of the Vix

We denote by F(t, T) the value of the Vix futures at time t with 
settlement at time T and by F(t) the spot value of the Vix, respec-
tively. The square of F(t) measures the expected annualised real-
ised variance for options with maturity time 

T
, while the square 

of F(t, T) measures the expected annualised realised variance at 
future time T for options with maturity time T + 

T
, where 

T

corresponds to the year fraction of 30 days (
T
 = 30/365). Accord-

ingly, at future time t = T, F(t, T) is the square root of the expected 
variance realised over time period [T, T + 

T
]:
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Now, using stochastic differential equation (2), we obtain:
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Accordingly, the Vix spot values F(t) can be represented as a 
function of the variance at time t:

F t( ) = m1 t( ) + m2 t( )V t( ) (9)

while the Vix futures F(t, T) with settlement time T can be repre-
sented as time-t expectation of the variance at time T:

F t,T( ) = EQ m1 T( ) + m2 T( )V T( ) F t( )⎡
⎣

⎤
⎦ (10)

From equations (9) and (10), we see that a derivative on Vix is 
essentially a bet on the future implied variance. Invoking Itô’s 
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lemma for equation (9), we can show that the dynamics of F(t) is 
mean-reverting with reversion speed /2 and a stochastic mean 
level being the function of F(t).

Pricing derivatives on the Vix

Now we consider the problem of pricing Vix futures and call 
options by using our general pricing formula (5). For the value 
function UF(t, T, V) of the Vix futures, the payout function to be 
used in formula (6) is:

uF X ,V , I( ) = m1 T( ) + m2 T( )V T( )
Performing integration in (6), we obtain:

û F , ,
2 2 e

m1 T

m2

m2 T
m2 T

3/2 0 0 (11)

where 
R
 < 0 and 

a
(C) is the delta function of the complex-

valued argument defined by formula (27) in Sepp (2007).
Simplifying formula (5), we obtain (the discount is not used for 

Vix futures):

U F t,T ,V
1
R ĜV t,T ,V , P̂ d I0
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where G
^V is the Fourier transform of the marginal density of 

the variance:
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The payout functions of the Vix call option are given respec-
tively by:

uC X ,V , I( ) = max m1 T( ) + m2 T( )V T( ) − K , 0{ }
where K is the strike measured per Vix point.

Calculating transform (6) and simplifying formula (5), we 
obtain the value of the Vix call by formula (12) discounted with 
factor DF(t, T) and:

P̂
1 erf K
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2m2 T
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where 
R
 < 0 and:

erf z
2

e s2

0

z
ds

is the error function of the complex-valued argument, which can 
be evaluated using series representation (7.1.29) in Abramowitz & 
Stegun (1972).

Illustration

To illustrate our model, we calibrate it to the Vix options data 
observed on July 25, 2007. By changing the term structure of the 
piece-wise at-the-money volatility (t), we ensure that the Vix 
futures prices are reproduced by the model and other model param-

eters are obtained by the global fitting to the call option prices. The 
estimates of these parameters are as follows:  = 2.26, ,  = 
2.54, , the time-average of the (t) is 0.18. The calibrated 
model adequately fits call option prices within the bid-ask spreads.

We see that the model implies a big jump (almost 100%) in the 
Vix with high probability. In figure 2, we show the model implied 
density for the Vix and the empirical frequency of the Vix calcu-
lated from Vix closing levels observed from July 25, 2000 to July 
24, 2007 (the CBOE provides historical records for the Vix, cal-
culated by the current approach, dating back to 1986). We note 
that the right tail of the empirical Vix density is based on Vix 
values that occurred before 2003, when the new methodology for 
the Vix calculation was implemented and the implied volatility 
dropped from its historical highs in 2001 and 2002. However, 
the model implied density covers the high values of the Vix expe-
rienced in the second half of 2007.

Hedging

We now consider some hedging strategies implied by this cali-
brated model. In general, the hedging of a Vix futures contract 
can be done by trading in Vix futures contracts with different 
maturities, while a Vix option can be hedged by trading in Vix 
futures contracts. The corresponding hedge ratios can be calcu-
lated by applying implicit differentiation to pricing formula (12). 
For example, the futures delta of the call option, Ucall(t, T

2
, V),

with respect to the Vix futures, F(t, T , V), is calculated by:

U call t,T2 ,V

F t,T1,V

U call t,T2 ,V

V

F t,T1,V

V

1

(14)

In figure 3 (left-hand graph), we examine the model implied 
futures deltas and gammas for: 1) the strategy involving hedging 
the futures with expiry in December (T = 0.4) by trading in Vix 
futures with the shortest maturity (T = 0.08) (denoted by Futures-
Delta1 and FuturesGamma1, respectively); 2) the hedging strategy 
for the call option with strike K  and expiry in December (T = 
0.4) by trading in Vix futures with the shortest maturity (CallDelta1 
and CallGamma1); and 3) the hedging strategy for the call struck 
at K  with both the futures and the call expiring in December 
(CallDelta2 and CallGamma2). We see that for high values of the 
Vix, the futures delta in the second strategy converges to the same 
delta as in the first strategy because the underlying for the Vix 
option is essentially the Vix forward value.
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In figure 3 (right-hand graph), we show the volatility-of-volatil-
ity risk, obtained by increasing the value of the volatility-of-vola-
tility parameter  by 1%, for Vix futures and call option contracts 
with different maturities. We see that the Vix futures contract has 
negative volatility-of-volatility risk (because the square root is a 
concave function). The call option can be thought of as a compos-
ite function of the Vix (as the underlying) and the Vix futures (as 
the limiting call value for large values of the Vix), so that the 
positive call convexity to the Vix results in the positive volatility-
of-volatility risk. For large values of the Vix, the positive call delta 
with respect to the Vix futures and the negative volatility-of-vola-
tility risk of the latest results in the negative volatility-of-volatility 
risk of the call option.

We see that, in general, the risk measures of Vix futures and 
options behave differently to those of vanilla options. It is 
important to note that the standard delta-gamma hedging is not 
appropriate for Vix options hedging because of the infrequent 
and large jumps observed in Vix dynamics. There are a few 
potential ways to hedge jumps, and we follow the one suggested 
by Andersen & Andreasen (2000), which is based on elimina-
tion of the expected jump impact. If we hedge the Vix call, 
Ucall(t, T, V), with two futures contracts, F(t, T , V) and F(t, T

2
,

V), where T T
2
, then we calculate the expected jump risk of 

the hedging position as follows:

t 1F t,T1,V 2F t,T2 ,V U call t,T ,V (15)

with:

F t,T1,V F t,T1,V J F t,T1,V J dJ
0

1
R
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1 B t,T1
1 ĜV t,T1,V , P̂ d I
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(16)

where to explicitly compute F
_
(t, T , V) we use formula (12) along 

with (17). Hedge ratios  and 
2
 are calculated by setting (15) 

and the variance delta of the hedging position (t) to zero.
To test the delta-jump-hedging strategy in our model, we apply 

Monte Carlo simulation of our calibrated model to hedge the 
short position in the Vix call with maturity T = 0.4 and strike K

 by using two strategies: 1) the variance delta-hedging by 
trading in Vix futures with the same expiry date; and 2) the vari-
ance delta and jump risk hedging by trading in the two futures 
contracts with maturities T = 0.4 and T = 0.5. For both strategies 
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we use the same set of random numbers and generate 1,000 sce-
narios. Within each scenario, we simulate the Vix, applying for-
mula (9) at each business day during the option life and rehedge 
the position daily with the number of rebalancing trades totalling 
100. We normalise the final outcome of each scenario by the ini-
tial option price ($2.4311) and, for brevity, we ignore transaction 
and financing costs. In table A, we show the statistics of both 
strategies and in figure 4 we show the histograms of the final 
profit-and-loss distribution.

We see that if the writer of the Vix call option follows the plain 
variance delta-hedging strategy, they are short variance gamma, 
which means that their frequent and small gains are compensated 
by infrequent but rather huge losses when the Vix jumps. In con-
trast, if the hedger follows the delta-jump-hedging strategy, they 
are practically both variance delta- and gamma-neutral. As a 
result, the profit-and-loss distribution under the delta-jump-hedg-
ing strategy peaks at zero with little variation.

Conclusions

We have developed a dynamic model for the joint evolution of 
the Vix spot value and the S&P 500 index that can be made 
consistent with both the market prices of Vix futures and 
options, and options on the S&P 500 index. Utilising the gen-
eralised Fourier transform, we have obtained closed-form solu-
tions for values of volatility products, including futures and 
options on the Vix. Finally, we have examined some hedging 
strategies for this model. 
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A. Statistics of the variance delta-hedged portfolio

(Hedge 1) and the variance delta-jump-hedged portfolio

(Hedge 2)

Hedge 1 Hedge 2

Minimum –10.3492 –0.3037

Maximum 0.4838 1.7720

Average –0.0137 0.0018

Standard deviation 0.7470 0.1048

Skew –7.6472 7.2754

Kurtosis 72.8494 102.6192

The Fourier transform of the Green function corresponding to stochastic dif-

ferential equation (2) is given by:

Ĝ t,T ,X , ,V , , I , e Y I A t ,T B t ,T t ,T (17)

where Y = X + 
T

t
(r(t ) – d(t ))dt and the functions A(t, T), B(t, T) and (t, T)

are defined by:
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N
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N
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n
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n
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n
computed by recursion:
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Appendix I: the transformed Green function
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