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By far the largest Va market in the world is the United states, 
where variable annuities are widely used in retirement planning. In the 
absence of compulsory annuity purchase requirements on retirement such as 
in the UK, Vas are a common and long-established retirement investment 
with some tax advantages. 

Variable annuities are also referred to as accumulator products or as gMxBs 
where, in the latter, the ‘x’ describes the nature of the guarantee in the prod-
uct, commonly known as the rider. a typical ‘guaranteed Minimum x 
Benefit’ might refer to accumulation (gMaB), Income (gMIB), Death 
(gMDB) or Withdrawal (gMWB). 

In the Us, which has the best established Va market, the most common Va 
product is by far the gMWB. approximately 78% of Va sales in the Us in 
the first half of 2005 contained a gMWB feature1. the focus of this paper is 
therefore a dollar-denominated gMWB policy. More recently, the gMWB 
for life, introduced in 2004, has proven extremely popular. 

When a gMWB is purchased the initial capital is invested in a sub-account 
at the holder’s discretion. the holder can withdraw guaranteed periodic 
amounts up to the value of the initial capital. the gMWB terminates once 
the initial capital has been withdrawn; any remaining funds in the sub-
account are returned to the policyholder at maturity. so the sub-account 
value fluctuates with movements in the underlying assets and decreases with 
withdrawals.

therefore, a gMWB effectively combines:
l an annuity, in the form of guaranteed periodic withdrawals
l a call option on the underlying residual sub-account at maturity
the policyholders are the owners of the sub-account. as such the insurance 

company is selling protection on an account that is largely managed by the 

policyholder. typically, these products offer clients some restricted choice of 
investment funds for the sub-account with some limited ability to switch 
fund allocations during the lifetime of the policy. an asset allocation split of 
60/40 between equities and fixed income is quite common.

the potential uncertainty arising from fund switching or varying amounts 
of equity in the underlying asset allocation should imply high fees. however, 
finite-life gMWBs typically carry a fee of 40-60 basis points per annum, 
traditionally charged as a percentage of the sub-account value. We will see in 

the next section how fees tend to understate the financial cost of the protec-
tion provided.

Insurance companies compete against each other not only on fees but also 
on the features of the product. Nevertheless, the typical gMWB carries the 
following features:
l fee charged to the sub-account
l  some fixed maximum annual withdrawal per $100 invested initially, 

typically $7
l  withdrawals above the limit are allowed but the investor pays a penalty 

and may give up some of the guarantee
figures 1 and 2 illustrate the workings of a typical gMWB for two given 

sub-account scenarios: a bad one and a good one. 

Table 1: Annual charges

Typical annual charge

GMDB 15–35bp

GMWB 40–60bp

GMAB 30–75bp

GMIB 50–75bp

Source: Deutsche Bank
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In a good scenario (fig. 1), when the underlying assets perform well, the 
yearly withdrawal of $7 will be at least partially offset by capital appreciation. 
the sub-account therefore covers the withdrawals over the life of the gMWB 
and even has a positive value at maturity. the investor benefits from the peri-
odic cashflows, as well as the terminal value of the sub-account. the insurer 
receives the annual fees and has no shortfalls to cover.

In a bad scenario (fig. 2), there comes a point where the sub-account value 
cannot cover the $7 withdrawal. at that point the sub-account is liquidated and 
the balance of $7 is covered by the insurer. In addition, until the gMWB matu-
rity, the insurer will have to cover the $7 periodic withdrawals. In this instance 
the investor only receives a yearly $7 cashflow with no upside. the insurer 
provides these cashflows when the sub-account reaches $0 until maturity.

Pricing
the pricing of gMWBs and Va policies in general is similar to pricing long- 
maturity exotic financial derivatives. Vas have the following features in 
common with exotic derivatives:
l  a basket of underliers (equity, fixed income and others), ie. hybrid 

features
l  ratchets (lookbacks), or roll-up features 

the biggest difference between Va policies and most financial derivatives is 
that the former combine financial risks with insurance risks such as surrender, 
longevity and mortality. In this sense, they are complicated products to price, 
and even more complicated to hedge precisely. 

In the case of our gMWB, the risk that more, or less, people than expected 
surrender their policies, and the timings of these 
surrenders, can have a significant effect on pricing. 
We will explore the effects of insurance risks on 
pricing and risk management in a further paper.

In general, at least for market risks, similar rules 
apply as would to standard derivatives; a longer 
maturity product would tend to cost more and will 
be sensitive to the level and volatility of the under-
liers. 

Deterministic rates
We initially assume deterministic rates. We will 
relax this assumption later on and investigate its 
impact. throughout this section the following will 
be assumed as a base case:

l  5% flat yield curve
l  lognormal (Black-scholes) underlying asset 

with 20% volatility 
l  $7 yearly withdrawal
l  $100 initial investment/guarantee/stock price
l  no fees and no penalties

In other words, the underlying asset satisfies the 
following standard stochastic differential equation 
under the risk neutral measure:

  

S
S

= rdt + σWt
d ,

where:
 Wt is a Weiner process,
 r is the interest rate, set at 5%, 
 and σ is the volatility, set at 20%.

two methods of pricing are widely used: Monte Carlo (MC) and Numerical 
Partial Differential equations (PDe). the MC method has the advantage of 
allowing a great number of variables to be stochastic and any payoff to be priced. 
In addition it will lead to a distribution of outcomes, which proves useful when 
doing scenario analysis. the PDe methods can be more accurate and further 
can be used to consider optimal withdrawals, unlike MC (Milevsky and 
salisbury, 2004). Initially we will use the MC method for pricing purposes. 

following put-call parity arguments, the value of the guaranteed periodic 
withdrawals and the call option on the sub-account (residual sub-account at 
maturity) should equate to the sub-account plus the cost of insurance (get-
ting the guarantee when the sub-account is zero, ie., a put option):

Call option + guaranteed withdrawals
=

sub account + Insurance cost

figures 3 and 4 show the main variables along the average path (average 
over the simulations). Over the average path the present value of the yearly $7 
withdrawals is $71.3. the present value of the expected residual sub-account 
value is $32.7. this gives a total $104.0 value to the investor.
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this therefore implies that the cost to the insurer is $4.0. In theory, fees on 
the sub-account should cover that cost so that the expected value to the inves-
tor is less than $100, implying a negative cost to the insurer.

table 2 shows the value of the different gMWB components for various 
allowed withdrawal levels. since we assume the investor withdraws the max-
imum allowed, withdrawals are another way of defining the product maturity. 
a withdrawal of w per year implies a maturity of 100/w years.

as such, high withdrawals reduce the option value and increase the guaran-
tee value. the guarantee value is obviously increased as the time value loss is 
smaller since the $100 nominal value is recovered quicker. the option value 
is reduced as there is less time for the sub-account to grow.

More importantly, the higher the withdrawal allowed by the gMWB, the 
higher the insurance cost. the act of withdrawing a high proportion of the 
sub-account means it will converge quicker to zero and have less time to 
recover from a bad underlying asset performance. as such the insurer is more 
likely to have to provide the guarantee.

so what should be the fair value cost of investing in gMWBs? We have seen 
that it will depend on the withdrawal level. It will also depend on the volatil-

ity of the underlying sub-account assets. the more volatile the assets, the 
more valuable the option. table 3 shows some fair value fees, assuming the 
fee is deducted as a portion of the sub-account (effectively equivalent to a 
dividend yield on the underlying asset).

as expected, the fair value fee grows with withdrawals as it increases the 
value of the insurance. It also reduces the maturity of the gMWB, shorten-
ing the period over which the fee can be earned. this aspect is only important 
at the product design phase. 

the fair value fee grows exponentially with volatility and therefore highlights 
how critical the volatility of the underlying asset is. It is therefore important for 
insurers to consider the likely volatility of the assets chosen by the investor. 

the results imply that some insurers may have underpriced gMWBs, should 
investors elect volatile investments. as shown earlier, typical fees range from 
40 basis points to 60 basis points. this apparent underpricing may have 
arisen from changes in product design or competitive pressures. 

the underpricing becomes more apparent when we consider that the fair 
value fees that we have deduced in table 3 are just the theoretical cost of 

hedging the guarantee. In reality, the fees charged to the policyholder need 
to include cost of capital for the policywriter, frictional costs arising from the 
basis risk of the theoretical versus actual hedge, a profit margin for the poli-
cywriter and any fees needed to cover insurance risks that have not been 
accurately captured in the pricing models used. 

On this latter point, the insurance risks in the Va products being offered, 
such as lapse or mortality, can have a large impact on pricing. In the case of 
lapse, or policyholder behaviour in general, in the absence of a rigorous pric-
ing methodology for the actual risk, Va writers need to price conservatively 
and thus need to assume that policyholders behave completely rationally (ie. 
they always exercise in-the-money options). traditionally, this assumption 
has not been made and therefore has added to the degree of mispricing that 
has occurred in this market. 

furthermore, many Vas were historically priced under real-world assump-
tions (P-measure), including risk premia on assets. for hedging and fair 
valuation purposes the risk neutral Q-measure is the one that matters, under 
which all assets earn the risk-free rate. the implication is that indeed, on aver-
age, in the real world, fees might cover for the expected insurance cost. 
however, in practice there is only one realisation of asset returns. In that 
case, only if fees are used to implement the appropriate hedging will they 
cover for the expected insurance costs.

We now investigate the greeks for the typical gMWB. for that purpose 
numerical PDes are a more appropriate tool. Under the PDe methodology, 
the gMWB is priced recursively starting at maturity. We can therefore derive 
a surface of gMWB value versus time and sub-account value.

from this we can derive the insurance value, as well as its delta and gamma. 
We calculate the basic greeks with respect to the total account value, for dem-
onstration’s sake. however, from a risk management practitioner’s point of 
view, risk needs to be analysed with respect to the level of component risk 
factors in the account basket, ie. interest rates and equities (rho and delta 
respectively), and their volatilities (vega). 

the insurance cost (fig. 5) exhibits a put-like profile. the main differ-
ence with a standard put is that the forward path is one where the 
underlying drops in value, because of withdrawals, rather than growing at 
the risk-free rate.
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Figure 5. GMWB insurance cost 

Table 2: Pricing for various maximum withdrawal levels

Withdrawal Option Guarantee Package Insurance

5 40.27 63.08 103.35 3.35 

7 32.73 71.31 104.05 4.05 

10 26.03 78.53 104.55 4.55

15 19.93 84.86 104.79 4.79

20 16.60 88.29 104.89 4.89

Table 3: Fair value fee (bp per annum)

Volatility

Withdrawal 10% 20% 30%

4 1.0 16.5 46.0

7 5.0 52.0 132.5

10 11.5 97.0 226.0

15 27.0 165.0 367.0

Source: Deutsche Bank

Source: Deutsche Bank

Source: Deutsche Bank
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similar to a vanilla option, the delta (fig. 6) exhibits an s-shaped profile 
and the gamma (fig. 7) peaks around the ‘at-the-money’ level and increases 
as we get closer to maturity.

Stochastic rates
Until now we have only considered deterministic rates and a flat yield curve. 
Instead, we can consider stochastic rates. We do so here, using a single factor 
Vasicek model, calibrated on the Us yield curve (as of august 31, 2008). In 
this model, the short rate dynamics under the risk-neutral measure Q are 
given by dr(t) = k[θ – r(t)]dt + σdW(t), where k, θ, and the volatility σ are 
constants and W(t) is a Brownian motion. as we introduce another stochastic 
variable, we only consider Monte Carlo pricing. 

Under this set-up our results are qualitatively similar to the ones obtained 
earlier. In fact, the most important factor now is the correlation between rates 
and the underlying assets. 

When quoting on hybrid products, traders usually calibrate their bid-ask 
spread based on rates-equity correlations of -50% and +50%. We calculate 
the gMWB insurance cost based on these correlations as well as 0%.

as shown in figure 8, the insurance cost generally increases with the allowed 
withdrawal amount (or as maturity decreases), just like under deterministic 
rates. the insurance cost increases with correlation, similarly to a standard 

put. With positive cor-
relation, a put option 
will tend to pay off when 
rates are low. the payoff 
will be discounted at a 
lower rate, giving a 
higher value. the oppo-
site happens with 
negative correlation.

Hedging
local and international 
regulators require insur-
ance companies to 
appropriately measure 

financial risks underlying their business. as we move towards solvency II 
there is increased focus on market consistent risk measures including tail risk, 
such as value-at-risk measures. hedging can have a dramatic impact on such 
tail-risk measures.

fees levied on gMWB are set to cover the cost of protection on average. In 
the real world there is only one realisation of asset performances. It is there-
fore important to invest fees in assets that will replicate the behaviour of the 
guarantee being sold.

Hedging versus reserving
for regulatory and economic purposes, the rationale for hedging or reserv-
ing is to be able to withstand a significant market shock. the relevant risk 
level is typically the 0.5% percentile over a one-year horizon.

assuming normal distributions, this requires covering against a 2.58 stand-
ard deviation shock. In other words, if assets are kept as a reserve against 
deterministic shocks, solvency is only guaranteed at the confidence level consid-
ered. Only reserves equal to assets can ensure solvency with 100% confidence.

On the other hand, one can hedge the tail risk via put options. In this case the 
tail risk will be entirely covered with 100% confidence. the burden of provid-
ing protection, including model and jump risk will fall on the option writer. 

the advantage of hedging is that capital allocated to hedges can be many 
times smaller than reserving. In table 4 we demonstrate this for the situation 
where the Va writer is short a put only, such as for a simple gMaB on a 
basket of interest rates and equities. In this case, the hedge cost is the cost of 
the put whereas the cost of reserving for the risk is equivalent to holding 
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Table 4: Hedging versus reserving 

Hedge Reserve

Cost2 0.4 x σa x √T ~2.6 x σa x √T

Advantage Total transfer of risk Investment freedom of free assets

Disadvantage 
Negative carry asset (time value decay)

Volatility risk premium cost

Still non-zero probability of default
Cost of capital and de-leveraging of 
balance sheet in distress periods

2  the first formula is an approximation of the Black-scholes formula where the option is struck at the money forward (K = sert). 
the Black-scholes formula collapses to Put = Call = s [N(d1) – N(d2)] with d1 = –d2 = ½ σ sqrt(t). a taylor expansion of the 
function N(.) at d1 and d2 yields to the following approximation: Put = Call ~ 0.4 s σ sqrt(t). this cost estimate ignores 
transaction charges. 

Source: Deutsche Bank Source: Deutsche Bank
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assets sufficient to absorb a shock down to the reserve level. assuming a stress 
equivalent to a solvency II stress level of 99.5%, this requires assets of roughly 
6 times the cost of hedging. 

the decision to hedge or not should therefore be based on the cost of hedg-
ing versus the opportunity cost on reserve capital (figure 9).

Static versus active hedging
When it comes to hedging, a wide spectrum of solutions is available, from 
static hedging on one side to active hedging on the other.

In the case of gMWBs, the perfect hedge is a put option on the sub-account 
value. given that the sub-account value is affected by relative changes (per-
formance of the underlying) as well as jumps (withdrawals) it cannot be 
hedged with standard instruments. Milevsky and salisbury (2004) claim that 
the value of the gMWB is equivalent to a Quanto asian put on an underlying 
which is the inverse of the sub-account price. this still keeps the sub-account 
as underlying and introduces an exotic option which would still have to be 
managed using plain vanilla options. In other words, there will always be a 
basis risk between the hedge and the required hedge.

a perfect hedge is likely to be prohibitively expensive given the complexity 
of the underlying sub-account process. a static hedge is more likely to be a 
portfolio of options chosen to best replicate the insurance cost. a basis risk 
will remain. a dynamic hedge should reduce the basis risk but will introduce 
transaction costs as well as requiring ongoing risk management.

to illustrate the pros and cons of both strategies we will reconsider the 
gMWB with deterministic rates. for the dynamic hedge we will assume a 
monthly rebalancing. standard delta-hedging is undertaken giving rise to a 
basis risk given that only the first derivative with respect to the underlying is 
considered. Other greeks and higher orders are ignored. the reader should 
note that delta hedging alone, albeit on a more frequent basis, has been the 
hedging approach adopted by many Us insurers who have sold Va products. 
the technique, in the absence of hedging of other and higher order greeks, 
has proven to be insufficient in stress scenarios, particularly where large 
sudden shocks occur in market levels and volatility. 

In the static case we can consider a range of potential solutions:
l  single put
l  Portfolio of puts with different strikes and maturities
l  Put spreads, designed to only provide a $7 payoff at option maturity, in 

accordance with withdrawals
the allocation to various instruments is performed by minimising the basis 

risk at maturity between the insurance cost and the hedge payoff. effectively we 
perform a constrained regression (positive weights, no intercept) to replicate the 
insurance risk with our universe of hedges. the r2 of 
the regression is the metric we use to assess the effec-
tiveness of the hedge. as a result, the optimisation of 
a static hedge still introduces model risk.

Initially we consider the single put (fig. 10). for 
that we look at a selection of puts with maturities 
ranging from 5 to 14 years with strikes between 
80% and 110% of spot. We find that at-the-money 
spot puts work best and the 7-year maturity is opti-
mal, giving an r2 of 81.1%. longer-dated puts are 
less effective, given the path dependency of the 
insurance cost and the greater impact of bad per-
formance of the underlying in earlier years.

If we consider a portfolio of at-the-money puts (5- to 14-year maturities), 
we can increase the goodness of fit to 93.7% (fig. 11). Under this setup most 
of the weight is attributed to the 5-year option. In general, longer-dated puts 
attract smaller weights, in line with the decreasing r2 at individual put level. 
a portfolio of puts also has the advantage of not having the hedge concen-
trated in a single instrument.

the portfolio of put spreads performs marginally better than the single put 
hedge (r2 of 86.4% versus 81.3%), but worse than the portfolio of standard 
puts (r2 of 93.7%). the rational for put spread was only to get a payoff equal to 
the required amount, ie. $7 to cover for the withdrawals in any particular year. 
however, the underlying of the put is different from the sub-account. In fact the 
binary nature of the payoff of the put spreads introduces further basis risk.

But even the best static hedge underperforms the dynamic hedge (r2 of 
96.6%). figures 12 and 13 show how the dynamic hedge always leads to a 
small basis risk. the static hedge sometimes leads to no basis risk when the 
underlying asset performance is good (no insurance has to be provided) but 
leads to a basis risk when the underlying performance is poor.

this is further highlighted in figure 13 showing a much tighter distribu-
tion of the basis risk for the delta hedging than for the portfolio of puts. We 
also see that the portfolio of puts significantly reduces downside basis risk 
relative to a single put. 

It is important to remember that in this example we have ignored insurance 
risks, in particular, policyholder behaviour. the dynamic approach provides 

Figure 9. NAV profile at maturity 
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flexibility in managing insurance risks through the constant re-appraisal of 
the hedge as insurance risks materialise. the dynamic approach would there-
fore be superior in a real-world setting.

alternatively, one could hedge semi-statically. In other words: dynamically 
managing a static hedge because, although the dynamic hedge appears opti-
mal, in practice there may be hurdles to implementing it. first, there is model 
risk and in particular the possibility of jumps. this is nearly impossible to 
delta hedge. With a static hedge, the burden of replication in case of jumps 
(and the options management in general) would fall on the option writer, 
while risk monitoring would remain in-house with the Va seller. furthermore, 
carrying out a dynamic hedge requires appropriate resources which not all 
insurers have or could afford. 

It is worth mentioning one way in which Va sellers can remove most of the 
risks arising from the Va book. this involves transacting a reinsurance type 
contract, with either a bank or reinsurance company. the last remaining risk 
then becomes counterparty risk – which can further be limited through col-
lateralisation. In current markets, we see the ability to transact such contracts 
as being increasingly limited, with many reinsurers reassessing their appetite 
for such deals. 

for those who choose to retain insurance risks, in the absence of a (liquid) 
market for hedging these risks, they normally remain with the Va seller. 
Nevertheless, they can be mitigated through product design and through 
reserving explicitly for risks that cannot currently be hedged through the 
capital markets.

Conclusion
While this article has looked in some detail at pricing and hedging of one 
particular type of Va policy, it should have become clear that pricing and 
hedging these products ‘correctly’ is a very product-specific and potentially 
complicated exercise. We considered a very simple product – the addition of 
‘attractive features’ such as ratchets or lookbacks further complicates the pric-
ing and hedging process of Va policies.

In the context of an insurer taking such products to market for the first 
time, as is the case for many european insurers, the list of practical consid-
erations expands dramatically: 

l  Can current distribution channels fairly market the product?
l  Is product design fully optimised for risk management?
l  Does intellectual and technical pricing capability exist in the firm? 
l  What reserves are required? 
l  What risk management techniques should be adopted? Dynamic or 

static hedging?
l  are new systems required for risk monitoring and/or hedging? 
l  Is reinsurance a possibility?

In the Us and Japan, where Va products have been around for a while, Va 
sellers have already dealt with the above considerations, even if, in our opinion, 
charges for Va products tended not to cover fully the implied costs. In these 
markets, Va sellers have entered a new phase of risk management of these 
products such that a re-appraisal of the risk versus charges is under way. this 
has led Va sellers to consider outsourcing hedging to third parties more natu-
rally equipped or willing to deal in dynamic market and insurance risks. L&P
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