Basel Il

IRB approach

explained

At the end of this month, the consultation period for the new Basel Accord on bank
capital will end. We have prepared a technical section this month devoted to various
issues surrounding Basel Il. In the first paper, Tom Wilde sheds light on the assumptions
and parameters underlying the internal ratings-based approach

eyond the contentious multipliers and add-ons present
in the internal ratings-based approach (IRB, Basel,
2001), lie equations that have generally been wel-
comed. The Basel Committee on Banking Supervision
has been applauded for bringing bank capital more
into line with credit risk modelling theory. However,
the IRB calculations do lack some transparency. Here, I show how the base
risk weights of the IRB approach are determined and discuss the granu-
larity adjustment, which fits into the same framework. The interested read-
er should also refer to Gordy (2000b), which reports the actual modelling
work on which the IRB approach is based.

A brief history of credit risk modelling
The context of the IRB approach is the theory of credit risk modelling. In
recent years, commercial or publicly available models of credit risk have
appeared, notably KMV’s CreditMonitor, JP Morgan’s' CreditMetrics, Cred-
it Suisse First Boston’s CreditRisk+ and McKinsey’s CreditPortfolioView.
The ideas behind these models are due in part to earlier authors, notably
Merton (see, eg, Merton, 1974) and Vasicek (1987).

Hickman & Koyluoglu (1998) pointed out that the models all derive from
a common framework in which part of each model deals with systematic
risk, and a “second stage” assesses the additional unsystematic component.
Systematic risk has the same meaning as in the capital asset pricing model,
being the sensitivity of the overall condition of the portfolio to the econo-
my, which cannot be diversified away. Hickman & Koyluoglu also showed
that the different choices made in the publicly available models can broad-
ly be compensated for by appropriate parameterisation (see also Gordy,
2000a, which contains an in-depth analysis of CreditMetrics and CreditRisk+).

Risk managers, regulators, consultants and academics have now all con-
tributed to this theory so there is now an accepted general framework for
measuring credit risk. Finger (1999), Belkin, Suchower & Forest (1998) and
Lucas et al (1999) are some further important contributions to the theory.

The common framework

We summarise the common framework from Hickman & Koyluoglu (1998).
Suppose there are systematic factors, or drivers of default, represented math-
ematically by random variables X,, ..., X,, such that the probability of de-
fault of any obligor A in the portfolio is given by some specified function*

Probability of default =Pa (X4,...,X )

The variables X, ..., X, “represent” systematic factors that affect default
rates, and which can be real (such as interest rates, share price indexes or
macroeconomic data) or formal (such as factors derived from principal
component analysis). For a given model, the functional dependence P,(X,,
.r, X)) typically has a fixed functional form, with additional parameters
specified for each obligor reflecting their intrinsic credit quality and sen-
sitivity to the variables. The specification of this function and of the vari-
ables X, ..., X, is the source of most of the differences between the
commercially available credit risk models.

Default probabilities therefore depend on factors that can also affect other

obligors, and in this way systematic risk is modelled. Normally, this is the
main risk inherent in the portfolio. However, the systematic factors only af-
fect the probability that an obligor will default; there is still an element of
chance about the actual number of defaults or the amount of loss. This el-
ement of pure luck is the source of unsystematic risk. Unlike systematic risk,
it will only be important for a portfolio that is small or has large exposures.

If n = 1, the model is called a one-factor model. Only one random vari-
able models the systematic element of uncertainty in the portfolio. The
one-factor models are the simplified relatives of the commercial models,
and are the models used to set the IRB risk weights. Specifically, the sim-
plified form of CreditMetrics is used to calculate base risk weights, and
CreditRisk+ assists in the calculation of the granularity adjustment.

By using one-factor models, there is no need to use a commercial model
directly, and the parameterisation issues for the more detailed models are
avoided as much as possible. However, there is a less obvious additional
advantage: one-factor models give rise to additive capital requirements.
This property is important because it is the reason why the risk weights in
the IRB approach do not have to be calibrated with reference to any par-
ticular test portfolio; subject to the modelling assumptions, they are rea-
sonably valid for all portfolios.

Before using a credit risk model, the Basel Committee has needed to
set parameters whose values must be determined by other considerations
than modelling alone.* Thus capital for credit risk will be calculated at
99.5% confidence over a one-year time horizon, and including expected
loss. The concepts presented below do not depend in any way on these
particular parameters but we will find it convenient to use them to avoid
cumbersome “over-general” notation.

A risk or capital weight is a factor to be applied to, say, loans, so that
the total across all loans adds up to the capital required for the whole port-
folio, ie:

Capital requirement = X (Exposure xcapital weight ) (1)

or, equivalently, in the language of risk weights (which are capital re-
quirements scaled up by 12.5):

Capital requirement = X (Exposure xrisk weight )x&% 2)

The problem is that capital was not defined as a sum of weights, but
as the result of a portfolio calculation. Can total capital, in fact, be ex-
pressed as suggested by equation (1) above? The weights used would have
to be valid across a wide range of portfolios.* In short, the Committee must
reconcile the following two objectives:

[ capital requirements should add up, to a reasonable approximation, to

T Now RiskMetrics Group

2 We use P for the random variable representing default rates and p for the average
of P over values of the variables. In most cases, the form of P is chosen so that its av-
erage p Is an explicit parameter to be input

3 It is valid to debate the choices they have made but that is not the purpose of this
article

4 Calculations using an “example portfolio” do not establish that certain weights are
appropriate or not. What is needed is a general theory that shows certain weights will
indeed hold in general
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99.5% percentile loss
(] capital weights must depend only on properties of the individual trans-
action, as in equations (1) and (2).

However, these objectives are not contradictory if a one-factor model
is used. This is the key advantage of one-factor models.

But to take advantage of the additive behaviour of one-factor models,
capital must be calculated by looking only at systematic risk. The unsys-
tematic component, which is normally much smaller, is not tractable in the
same way. The granularity adjustment deals with this component.

Systematic risk and its contributions
Normally, in finance, systematic risk is measured via covariance (“betas”
in the classic portfolio theory), but the framework described above makes
available a whole statistical distribution analogous to the loss distribution
but measuring only systematic risk.

Assume we are modelling the loss distribution from a portfolio I, using
the common framework and the notation above. Let E, be the average loss
given default (for simplicity, we take exposure to mean loss amount given
default, so that average recovery is already factored in) and G(EA) be its
proportional standard deviation (the standard deviation in dollars is then
E,o(E,). Now suppose we know the values of the systematic variables

Xqs +-ey X, This is like knowing the state of the economy. Then the aver-
age loss from the portfolio, and its variance’ are:
=D EnPy (X1, Xn) 3)
A
0% = Y ER (Pa (1 -Pa)+Pac? En)) (4)
A

The actual loss is drawn from a statistical distribution with this mean
and variance. Systematic risk distribution means that, if the portfolio is suf-
ficiently fine grained, the variance conditional on X, ..., X, will be small,
and so (eg, by Chebyshev’s inequality) the conditional distribution of loss-
es will just be the conditional average loss “with certainty”. The uncertainty
remaining then arises from the fact that we do not know the values of the
variables X, ..., X,. The distribution of losses is the distribution of the con-
ditional mean loss in equation (3). This random variable is called the sys-
tematic loss of the portfolio TT.

From the original portfolio IT construct a portfolio IT_, by replacing each
A with m new obligors A, ..., A each having exposure E,/m but the same
default probability P,(X,, ..., X.). As m tends to infinity, the portfolios form
a sequence that we think of as having a limit IT_ called the systematic port-
folio. TT_ is what the Basel Committee calls an “infinitely fine grained” port-
folio. We can check that the conditional variance (4) of IT gets divided by
m in this process, while the mean (3) is unaffected. So the notional port-
folio TT_ has as its total loss distribution just the systematic distribution (3),
ie, the random variable p defined by (3) is the systematic loss distribution
of IT.

For any statistic for the original portfolio I1, there is the corresponding
equivalent systematic statistic, which is the statistic evaluated on Il , or equiv-
alently on the systematic loss distribution (3). Of particular importance are
the systematic percentiles, such as the systematic loss 99.5% percentile, which
is defined as the 99.5% confidence point on the systematic loss distribution.
These are the quantities used to define capital in the IRB approach.

Putting equation (1) another way, the capital weight should be the mar-
ginal contribution made to the 99.5% point on the loss distribution by each
exposure (think of equation (1) for the original portfolio, and for the port-
folio with one exposure removed). Analogously, the systematic risk contri-
bution is the contribution made to the systematic 99.5% point. We write RC,
and SRC, for these two risk contributions. The systematic loss distribution
is given by (3) as the distribution of L. This looks promisingly like a sum of
random variables, one for each obligor. Suppose now that we are using a
one-factor model, ie, n = 1. Then the systematic loss distribution is just:

YEaPa (X)

Now provided this is an increasing function of X (in practice each PA(X)

will be increasing by suitable choice of X so this condition is not serious),
the 99.5th percentile of this distribution is just:

ZEAF’A (X99.5% )
A

and therefore the difference made to this by obligor A is just:
SRCA =EaPa (Xoo.5% )

We have achieved our goal of a model in which systematic risk contri-
butions depend only on the properties of an individual obligor.

The IRB risk weights

We apply the theory above to the IRB risk weights. These were derived
using the one-factor form of CreditMetrics. In this model, the systematic
factor X is a standard normal random variable (the systematic variable has
a “real” interpretation as minus the normalised systematic component of
asset return for each obligor).® Using N() to denote the cumulative normal
density function, the functional dependence is given by the well-known
Vasicek formula”:

N (pa)+ Xpi'?
(1_p )1/2

where p, is the “asset R — squared” for obligor A and p, is the unconditional
default probability (the formula does not make it obvious that p, is the av-
erage of P, but this is clear from the derivation of the Vasicek formula).® The
systematic risk contribution at 99.5% confidence is derived by setting X equal
to its 99.5% value 2.576, and multiplying by the exposure. Thus:

PA = N (5)

N (pa)+2.576p3/2
172 (6)
@-pa)
Using the Committee’s choice of p, = p = 20% (Basel, 2001, para-

graph 172), we can confirm the IRB risk weights for corporates directly.
We calculate:

(L-pn)*?=0.8"/2=1.118 and 2.576 p}/?/ (L -p,)'* =1.288

SRCA = EAN

These are the coefficients in the middle term in Basel (2001, paragraph
171). The retail risk weights (Basel, 2001, paragraph 310) can be derived
similarly with p = 8%.

The calibration factor
The full IRB risk weight is given as:

976.5 xN (1.118 N (Pa)+ 1.288)>< (Maturity adjustment )

(see Basel, 2001, paragraph 171). The middle term is equation (6). The last
term is an adjustment representing the additional capital required against
fair-value changes based on a loan of three years’ maturity. Its form is de-
rived empirically (the Committee refer to “judgemental pooling of infor-
mation”) and we do not discuss it here, except to note that it becomes one
for a loan of explicit one-year maturity (to see this, calculate the risk weight
in Basel, 2001, paragraph 159, for an asset with maturity M = 1. The third
term of the present base risk weight cancels with the maturity adjustment.)

The first term is a “calibration adjustment”. This number is mostly due
to conventions about the way risk weights are stated, so to see the real

5 The variance formula is obtained by directly applying the definition of variance for a
single obligor A, with loss equal to the (uncertain) loss given default in the event of de-
fault, or zero otherwise. The portfolio variance is just the sum across obligors because
they are independent conditional on the X, _

6 Not quite lognormal assets, as apparently claimed in Basel (2001, paragraph 172)
but the point is minor

7 See, eg, Hickman & Koyluoglu (1998) or Finger (1999)

8 Thus p is the unconditional chance of default over the next year, including good and
bad economic outcomes. This can be compared with guidance from the New Accord
on default probabilities. A “long run average” (Basel, 2001, paragraph 217) roughly
corresponds to observing p, from a time series of historic outcomes for obligors start-
ing out in the same condition as A (these are realisations of P, not p), but p is arguably
not “forward looking” as required by paragraph 218 as it depends only on the spot
characteristics of A
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scaling factor we must disentangle these. What factor would give a “pure
modelling” result, ie, just amount to equation (6)? For an asset with loss
given default equal to 50%, the capital requirement factor free of any scal-
ing should be just 50% x N(1.118N‘1(pA) + 1.288). To achieve this ef-
fect, the base risk weight should be set at:

100/0.08 x 5% xN (L.118N™ (p,)+1.288)

We have 100/0.08 x 50% = 625, so the Basel Committee seems to
have employed a scaling factor of 976.5/625 = 1.56 approximately, but
that is not quite right. Later, 4% of the capital calculated here is rebated
against the granularity adjustment (see Basel, 2001, paragraph 432). There
is no free lunch, however. This same 4% is first produced by grossing up
the baseline charge (Basel, 2001, paragraph 171) by 1/0.96, ie, so that
only 96% of the number calculated covers all the base risk, leaving 4% free
to cover granularity risk. Thus the actual multiplier is:

976.5/625 x 0.96 = 149.9%%

The Committee does not mention this multiplier explicitly, preferring to
present the calibration in terms of the capital requirement for a specific
asset (Basel, 2001, paragraph 172). This may reflect their original approach,
but one can assume they have also rounded up to arrive at 1.5 exactly.

The granularity adjustment

We have shown how the base risk weights quantify systematic risk exact-
ly according to the credit risk modelling framework introduced above. But
the question of unsystematic risk remains. Put another way, the risk weights
add up to the 99.5% point of the loss distribution of TT_, not IT itself. In
general, this should be expected to be close, but an underestimate of total
risk, and possibly a material understatement for a small portfolio or one
with large exposures. Figures 1 and 2 show actual and systematic loss dis-
tributions for a typical large and small portfolio. The distributions are sim-
ilar for the large but very different for the small portfolio.

The task to be performed by the granularity adjustment (Basel, 2001,
chapter 8) is to adjust the 99.5% point on the systematic loss distribution
to try to achieve the corresponding point of the actual loss distribution.

The adjustment (before rebating 4% of the base risk weight charge al-
ready surcharged within the base risk weight) is given as GA = GSF/n*
where n* is the reciprocal of the “Herfindahl index”. The granularity scal-
ing factor GSF is given in Basel (2001, paragraph 457) by:

GSF = (0.6 +1.8LGD 5 )(9.5 +13.75PD pg/Fag )

and is a scaled version of the formula given in paragraph 456:
B=(0.4+1.2LGDpg)(0.76 +1.1PD s/ Fag) (7)

where the scaling factor is 18.75 (= 1.5/0.08, arising from the transition
to assets from capital, and the further multiplier of 1.5 consistent with the
factor already applied to the base risk weights).

Unlike the base risk weights, the granularity adjustment is based on
CreditRisk+ with one factor. Here, default rates are parameterised de-
pending on a gamma distributed random variable X, with the following re-
lation replacing (5):

PA =Pa (1 —Wp + (.OAX)

Here X has mean 1 and variance 6(X), and the parameter w, is called
the “factor loading”. It describes how X affects the default rate of A, where
0 <, <1. The systematic risk contribution for obligor A is therefore SRC,
= Egpa(1 — 0, + 0Xgg 5,) in place of (6).

Since two models are being used, they must be calibrated somehow.
The Committee recognises that this is not a perfect situation but chooses
the best place to stitch the models together, namely at the 99.5% confi-
dence level (Basel, 2001, paragraph 446). Thus the weight ®, is chosen so
that CreditRisk+ agrees with the CreditMetrics model used for the base risk
weights, ie, the systematic risk contributions from the two models coin-
cide at 99.5%. This requirement is presented as:

Fa =Pa (1 — @ + ©aXog.5% )~ Pa =Pa0s (Xoo.s6 —1)

where F, is “systematic risk sensitivity” defined in Basel (2001, paragraph
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431), ie, the excess of the CreditMetrics systematic risk contribution over
the default probability.

The gamma distributed X is parameterised with 6(X) = 2 (Basel, 2001,
paragraph 445) and this leads to Xgg 5, =12.007 (this is easy to check
using GAMMAINV(0.995,0.25,4) in Excel). So the condition for equal per-
centiles is:

o 2
X)=F =F,
Pronc ()= Fa (Xooss —1) " (12.007-1)

as given in Basel (2001, paragraph 454).

To understand the granularity adjustment, we rephrase the Herfindahl
index in terms of a more universal concept, the variance of the loss dis-
tribution. From (4), the variance of the portfolio loss distribution condi-
tional on X is:

o? (T1]x)= Y3 (PA (X)L ~Px (X)) +Pa (X) 0° (EA))
A
So, the total variance of the loss distribution is:
(52 (H)= 02 [ZEAPA] + ZE% (pA (1 - p/—\)_ (52 (PA)+ Pa 02 (EA ))
A A

using p, as the average of P,. The left-hand summand is the variance of
the systematic loss variable 1 given by equation (3). The other summand
is called the unsystematic variance:

=0.182F, (8
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Gansys =Y Ez (pA (@-pa)- o? (PA ) +pac? (Ea )) 9)
A

In our one-factor CreditRisk+model we have:
67 (Pn)=pawao? (X) (10)
and so substituting into equation (9):
Onss = 2 €% (0 — P — PF0Ro? (X)) +Edpac? €))  (11)
A
The IRB approach chooses a specific form for recovery rate volatility,

(Basel, 2001, paragraph 447), which, in our notation’, is:

o Er)= LGD (1 -LGDA) (1 -LGDy)
MTTTTMGD? T ALGD,

To make our notation comparable with Basel (2001), we write our E,
as EAD, X LGD,, where exposure before recovery is EAD,. Then equa-
tion (11), using equation (8), becomes:

63neys = 3 EADZ (LGD,% (s —P% —0.033F7 )+0.25p,LGD, (1 —LGDA))
A

where 0.033 is the square of 0.182. This is given in Basel (2001, paragraph
452), except that our summation is directly over obligors.”® Also, by ig-
noring terms of order higher than one in default probabilities, the de-
nominator of the fraction for Ab is very nearly PDAGLGDAG(O.25 +
0.75LGD,). We substitute all this in the sum in Basel (2001, paragraph
455). The easiest way to do this is to assume that each risk grade contains
only one obligor, so H, = 1. We obtain, very nearly:

2
1 4'GUnsys

H* = —_—=
[ZEADA](1+3LGDAG)EL
A

*

(12)

where:
EL = (ZEADA]LGDAGDDAG = ZEApA
A A

is the mean loss from the portfolio. So, the Herfindahl index H* contains
much the same information as the unsystematic variance of the loss dis-
tribution. An odd term 1 + 3LGD,, seems to have been stripped out, but
this exact term is reinstated as one of the brackets in the equation for B,
as can be seen by examining equation (7).

What does the IRB equation for the granularity adjustment look like in
terms of unsystematic variance? Using equations (7) and (12), we can rewrite
the adjustment as:

GA = (ZEADAJB/n* =1.6 x (0.76 +1.1PD g/ Fag ) X Ofnsys /EL
A

Thus the only information the granularity adjustment uses about the un-
systematic risk is the unsystematic variance. This is not surprising — in gen-
eral, no other reliable information about the unsystematic risk to use. A
significant part of the unsystematic risk arises from the supposed recovery
rate volatility, for which we used an assumption about variance, but no
other information.

There is an alternative presentation of these facts. The actual adjust-
ment is the result of the careful numerical work described in Gordy (2000b),
but if one had nothing else to go on what would be one’s first estimate of
the granularity adjustment? Many practitioners would have scaled portfo-
lio systematic unexpected loss by the ratio of standard deviations, ie, ap-
plied the formula:

1/2
GAgstimate = UL X ((G%OIEH / Géys ) - 1) =UL x ngsys /2 Gszys

In the one-factor CreditRisk+ model, we can use equation (12) to work
this out. To do this, we also need to calculate the systematic component
of variance, which we obtain from equation (10) bearing in mind that 6(X)
= 2. After some manipulation, one obtains an equation similar to the ac-

tual adjustment:
GAestimate = (9-47PDag /Fa )(0.4 +1.2LGDyg )/ n*

This is a moderately successful approximation to the actual granularity ad-
justment and tends to overestimate, though it is close enough to provide a
“reasonableness check”. The crossover point where this expression agrees
exactly to the actual adjustment expression is 0.76 = 8.37PD, /F,, which
happens for a default probability of about 30 basis points. The two expres-
sions are within 25% of each other up to about a default probability of 1.30%.

Conclusion

The IRB risk weights and granularity adjustment are derived from a gener-
al framework of ideas that deserves to be widely understood as part of the
basic language of risk management. The IRB approach is not necessarily
right or the best possible, but at least rules derived from a general frame-
work are better than a patchwork of inconsistent special cases. But this clear
conceptual approach really only exists for the IRB risk weights and granu-
larity adjustment — if the same approach had penetrated throughout the new
Accord then arguably there could have been different proposals in several
areas. For example, the definition of default and discussion of “through the
cycle” versus “point in time” default probabilities, the treatment of retail as-
sets, the treatment of credit risk mitigation (the “w factor”) and joint default
risk, and the treatment of counterparty risk are all areas that can be consid-
ered in the light of the ideas above, at least as one valid point of view, and
this approach has not been adopted as universally as it could have been. l

Tom Wilde is the London-based head of credit risk portfolio mod-
elling at Credit Suisse First Boston. The first half of this article is
based on an unpublished document presented by the Internation-
al Swaps and Derivatives Association to US regulators in Septem-
ber 1999. The second half, on the new Accord’s granularity
adjustment, is new

Comments on this article can be posted on the technical discussion forum
on the Risk website at http://www.risk.net

9 The division by LGD? is needed because we refer to proportional volatility of LGD

10 There is no need for the intervening risk grades in Basel (2001), and, unfortunate-
ly, if the recovery rate is not constant, then, as a result of this formulation, the result
can depend somewhat on the particular choice of grades. To avoid the issue assume
recovery rates are constant across grades — after all, grades may be chosen at will
and need not contain more than one obligor
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