Credit risk

Reconcilable
differences

H Ugur Koyluoglu and Andrew Hickman explore the common ground between the new
credit risk models and the implications for risk management and regulatory capital reform

n the past few years, major advances in credit risk analytics have

led to the proliferation of a new breed of sophisticated credit port-

folio risk models. Several models have been developed, including

proprietary applications developed for internal use by leading-edge

financial institutions, and third-party applications intended for sale

or distribution as software. Several have received a great deal of
public attention, including JP Morgan’s CreditMetrics/CreditManager, Cred-
it Suisse Financial Products’ CreditRisk+, McKinsey & Company’s Credit-
PortfolioView and KMV’s PortfolioManager. These new models allow the
user to measure and quantify credit risk comprehensively at both the port-
folio and contributory level. As such, they have the potential to cause pro-
found changes to the lending business, accelerating the shift to active credit
portfolio management', and eventually leading to an “internal models” re-
form of regulatory credit risk capital guidelines?.

But before these models can deliver on their promise, they must earn
the acceptance of credit portfolio managers and regulators. To these prac-
titioners, this seemingly disparate collection of new approaches may be
confusing, or may appear as a warning sign of an early developmental
stage in the technology. While these misgivings are understandable, this
paper will demonstrate that these new models in fact represent a remark-
able consensus in the underlying framework, differing primarily in calcu-
lation procedures and parameters rather than financial intuition.

This paper explores both the similarities and the differences among the
new credit risk portfolio models, focusing on three representative models:
[ “Merton-based”, eg, CreditMetrics and PortfolioManager?;

[ “econometric”, eg, CreditPortfolioView; and
[J “actuarial”, eg, CreditRisk+.

Note that this paper examines only the default component of portfolio
credit risk. Some models incorporate credit spread (or ratings migration)
risk, while others advocate a separate model. In this aspect of credit risk
there is less consensus in modelling techniques, and the differences need
to be explored and resolved in future research. The reader should strictly
interpret “credit risk” to mean “default risk” throughout.

Additionally, for comparability, the models have been restricted to a
single-period horizon, a fixed recovery rate and fixed exposures.

Underlying framework

At first, the models appear to be quite dissimilar — CreditMetrics is based
on a microeconomic causal model of default; CreditPortfolioView is a
macroeconomic causal model; and CreditRisk+ is a top-down model, mak-
ing no assumptions about causality. Despite these apparent differences,
the models fit within a single generalised underlying framework, consist-
ing of three components:

[ Joint-default behaviour. Default rates vary over time, intuitively as a re-
sult of varying economic conditions. Each borrower’s default rate is con-
ditioned on the “state of the world” for the relevant economic conditions.
The degree of “correlation” in the portfolio is reflected by borrowers’ con-
ditional default rates varying together in different states.

[J Conditional distribution of portfolio default rate. For each state, the con-
ditional distribution of a homogeneous sub-portfolio’s default rate can be
calculated as if borrowers are independent, as the joint-default behaviour
is accounted for in generating conditional default rates.

U Convolution/aggregation. The unconditional distribution of portfolio de-

faults is obtained by combining homogeneous sub-portfolios’ conditional de-
fault rate distributions in each state, and then simply averaging across states.

This generalised framework allows a structured comparison of the mod-

els, as follows.
[] Conditional default rates and probability distribution of default rate.
All three models explicitly or implicitly relate default rates to variables de-
scribing the relevant economic conditions (“systemic factors”). This relation-
ship can be expressed as a “conditional default rate” transformation function
(see figure 1). The systemic factors are random and are usually assumed to
be normally distributed. Since the conditional default rate is a function of
these random systemic factors, the default rate will also be random.

The Merton-based model relies on Merton’s model of a firm’s capital
structure’: a firm defaults when its asset value falls below its liabilities. De-
fault probability then depends on the amount by which assets exceed lia-
bilities, and the volatility of those assets. If standardised changes in asset
value AA, are normally distributed, the default probability can be expressed
as the probability of a standard normal variable falling below some criti-
cal value c. Joint-default events among borrowers in the portfolio are re-
lated to the extent that the borrowers’ changes in asset value are correlated.

Since the Merton model neither assigns the transformation function, nor
assumes a probability distribution for default rates explicitly, these rela-
tionships must be derived. The change in asset value can be decomposed
into a set of normally distributed orthogonal systemic factors, X,, and a nor-
mally distributed idiosyncratic component €;:

AA; = bi1Xq +bjoXo+.. + 1- Zbi,kzei
K

where bi,k are the factor-loadings, and x,,&; ~ iid N[0,1].

Given the values of the systemic factors, the change in asset value will
be normally distributed with a mean given by the factor loadings and fac-
tor values, and a standard deviation given by the weight of the idiosyn-
cratic factor. The default rate, conditioned on the systemic factors’ values,
can then be expressed as™:
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For the single borrower or homogeneous portfolio case, the systemic
factors can be summarised by a single variable, m, reducing the transfor-

mation function to:
o= Jom
1-p

p|m=¢’f

T For example, see Kuritzkes (1998)

2 See International Swaps and Derivatives Association (1998)

3 The discussion that follows will focus on CreditMetrics as the example, but will also
apply reasonably well to PortfolioManager

4 See Merton (1974), Kealhoffer (1995) and Gupton, Finger & Bhatia (1997)

5 Vasicek (1987) develops this representation of the Merton model for a single factor
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where m ~ N[0,1] and

P=Zbk2
K

is the asset correlation.

Since the cumulative normal function is bounded [0,1] and concave in
the relevant region, the resulting default rate distribution is bounded [0,1]
and skewed right, as in figure 1.

The probability density function for the default rate, f(p), can be de-

rived explicitly, as follows:
c—y1- p<1>‘1(p)J
Vi-po| ———F————
[ P
Joo(@(p))

where ¢(z) is the standardised normal density function.

The econometric model® drives the default rate, Piv according to an
“index”, y; ,, of macroeconomic factors. The index is expressed as a weight-
ed sum of macroeconomic variables, X, each of which is normally dis-
tributed and has lagged dependency.

) = o{rlo}f ) -
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and

Yit = bjo +bj1Xat +bioXot+.. +0jt

where g, and v, are normally distributed random innovations.
The index is transformed to a default probability by the Logit function:

1

Pit = Traln

The index and macroeconomic variables can be combined to a single
equation:

Vit = [bi,o + bi,k(ak,o + A X t— Jj] + Y bikEit + Vit
K ' K

J

consisting of a constant term and random terms representing systemic and
index-specific innovations. For the single borrower or homogeneous port-
folio case, these random terms can be summarised by a single normally
distributed variable, m, so that the conditional default rate can then be ex-
pressed as:

1

U+Vm

|O|m= 1+e

where m ~ N[O,1], and U and V represent the summarised constant term
and coefficient to the random term, respectively.

Since the Logit function is bounded [0,1] and concave, the resulting
distribution is bounded [0,1] and skewed, as in figure 1.

The implied probability density function for the default rate, f(p), is

1 1 (1-p) U
1) = o{m(e) Vp(1-p) (p[V In( P j V]

The actuarial model” assumes explicitly that the default rate distribution
follows the gamma distribution. Joint-default behaviour is incorporated by
treating the default rate as a random variable common to multiple bor-
rowers. Borrowers are allocated among “sectors”, each of which has a
gamma-distributed default rate with specified mean and volatility. A bor-
rower’s conditional default rate is a scaled weighted average of sector de-
fault rates:

am
dp

— Xk
Px =P ok—
|X %‘kuk

where P is the borrower’s unconditional default rate, ®, represents the
weight in sector K,

1. Conditional default rate transformation

ZOJKZJ.
k

and:

sz

Xk ~ F[OLk,Bk] with oy = —5 and By = Sk
Ok Mk
The gamma is skewed right as in figure 1, but has unbounded positive
support.
Itis possible to derive the actuarial model’s implied transformation func-
tion such that when applied to a normally distributed systemic factor, m,
it results in a gamma-distributed default rate. The transformation function

consists of all points (x,&) that satisfy:

e -
JT(p;0uB)dp = [ @(m)dm
0 X

Hence, the transformation function is given by:
Alm = ‘{“1(1 - o(m);a, B)

where
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m ~ N[0,1] and ¥(z;0.,B) is the cumulative density function of the gamma
distribution.

[] Conditional distribution of portfolio default rate. Given fixed or
conditional default rates, a homogeneous sub-portfolio’s distribution of de-
faults follows the binomial distribution B(k;n,p), which provides the prob-
ability that K defaults will occur in a portfolio of n borrowers if each has
default probability p. CreditMetrics implicitly uses the binomial distribu-
tion by calculating the change in asset value for each borrower and test-
ing for default — exactly equivalent to the binomial case of two states with
a given probability. CreditPortfolioView explicitly uses the binomial dis-
tribution by iteratively convoluting the individual obligor distributions, each
of which is binomial.

CreditRisk+ uses the Poisson distribution P(k;pN), which provides the
probability that k defaults will occur in a portfolio of n borrowers given a
rate of intensity per unit time p. The binomial and Poisson distributions
are quite similar; indeed, the Poisson distribution is the limiting distribu-
tion for the binomial distribution.®
[JAggregation. The unconditional probability distribution of portfolio de-
faults is obtained by combining the conditional distributions of homoge-
neous sub-portfolio defaults across all “states of the world”. Mathematically,
this is expressed as a convolution integral.

6 See Wilson (1997)

7 See Credit Suisse Financial Products (1997)
8 See Freund (1992)

57 ¢ RISK » OCTOBER 1998



Credit risk

2. The models in relation to the
generalised framework
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The Merton-based and econometric models are conditioned on nor-
mally distributed systemic factors, and the independent loans’ defaults are
binomially distributed. Hence, the convolution integral for a homogeneous
sub-portfolio with a single systemic factor is expressed as:

_TB(k; n, p|m)(p(m)dm

The actuarial model’s homogeneous sub-portfolio convolution integral,
with gamma-distributed default rate and Poisson-distributed conditional
defaults, is:

[ P(k;np)I(p; 0, B)dp
0
These integrals are easily evaluated; in particular, the convolution of
the Poisson distribution and gamma distribution yields a closed-form dis-
tribution, the negative binomial distribution. It is the differences between
sub-portfolios — differing exposure size or default probabilities, or multi-
ple systemic factors, complex correlation structure, etc — that create diffi-
culty in aggregation. In practice, then, the convolutions are evaluated by
Monte Carlo simulation in CreditMetrics and CreditPortfolioView, while
CreditRisk+ uses a numeric algorithm based on “banding” exposures. In
all three cases, the procedures are exact in the limit.
Figure 2 depicts the models as they are redefined in relation to the gen-
eralised framework.

Harmonisation of parameters

The preceding discussion shows that all three models critically depend on
the unconditional default probability and joint-default behaviour. While
unconditional default probability is relatively straightforward, joint-default
behaviour appears in a different form in each model. The Merton-based
model uses pairwise asset correlations; the actuarial model uses sector
weightings and default rate volatilities; and the econometric model uses
coefficients to common macroeconomic factors. Although these parame-
ters are very different in nature, they contain equivalent information to
characterise joint-default behaviour.

[J Coefficients and correlations. The Merton-based model represents
joint-default behaviour with a set of asset factor-loadings or, equivalently,
a pairwise asset correlation matrix:

AA = bilej_ + bi12X2+. 41— Zbi,k2£i
Kk

The systemic factors are defined to be orthonormal, so that:
Eanan] - E[AAJHAA]

[l on T eon]-fonf)

=Dj1bj1 +bjobjo+...

correlatlon[AA,, AA J

The econometric model’s “index” regression coefficients closely re-

semble the asset factor-loadings of the Merton-based model. An “index cor-
relation” is easily defined in a similar fashion to an asset correlation, and
will be treated as equivalent, though they may provide slightly different
results to the extent of differences in their respective conditional default
rate functions.
[] Unconditional default rate and default rate volatility. The uncon-
ditional default rate and default rate volatility are specified directly in the
actuarial model. For the Merton-based and econometric models, they are
calculated by:

p= jplm o(m
and:

= [(pln-P) ofm)dm

The parameters for the Merton-based (¢ and p) and econometric mod-
els (U and V) can then be solved to yield a specified unconditional default
rate and default rate volatility. This defines the relationship between de-
fault rate volatility and asset correlation (see figure 3).
[] Default correlation. Some models take a Markowitz variance-covari-
ance view of credit risk portfolio modelling. Each borrower has a variance
of default given by the variance for a Bernoulli variable:

VAR(default;) = pi(1 - pj)
For a large homogeneous portfolio, the portfolio variance approaches:
2= 5(1 - E)Pdefault

This provides the relationships between default correlation and default
rate volatility and, therefore, asset correlation.

Mappings such as these allow parameter estimates to be “triangulated”
by multiple methods, to the extent that model differences are not signifi-
cant. For example, default rate volatilities can be used to estimate implied
asset correlations in the absence of asset value data.

Differences in default rate distribution

The discussion above (“Underlying framework”) demonstrates that sub-
stantial model differences could arise only from the differing treatment of
joint-default behaviour — the conditional default distributions are effectively
the same and the aggregation techniques are all exact in the limit. The sec-

9 These parameters were selected to match Moody'’s Investors Service’s “All Corpo-
rates” default experience for 1970-1995, as reported in Carty & Lieberman (1996)
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tion “Harmonisation of parameters” provides the means to compare the
joint-default behaviour on an apples-to-apples basis.

This comparison will be illustrated for a homogeneous portfolio with
an unconditional default rate, p, of 116 basis points and a standard devia-
tion of default rate, 6, equal to 90bp’. Since each model produces a two-
parameter default rate distribution, the mean and standard deviation are
sufficient statistics to define the relevant parameters for any of the mod-
els, as above. To yield p = 116bp and 6 = 90bp, the parameters for each
model are as follows:

[J Merton-based: ¢ = -2.27, p = 0.073
[ econometric: U = 4.684, V = 0.699
O actuarial: a0 = 1.661, B = 0.0070.

In this example, the models’ conditional default rate functions are vir-
tually indistinguishable when the systemic factor is greater than negative
two standard deviations. For extremely unfavourable economic conditions,
the econometric model predicts a somewhat higher default rate, and the
actuarial model predicts a somewhat lower default rate. The default rate
distributions (see figure 4) are also very similar, with only minor discrep-
ancies in the tails.

The degree of agreement in the tails of these distributions can be as-
sessed with the following statistic:

=

”f(x) - g(x)|dx
Z(fg)=1-==2 —
_[f(x)dx + _[g(x)dx

z

where f(x) and g(x) are probability density functions and z defines the lower
bounds of the “tail”, which will be defined arbitrarily as the area more than
two standard deviations above the mean, ie, z = p + 26. This statistic mea-
sures the amount of the probability distributions’ mass that overlaps in the
tail, normalised to the total probability mass of the two distributions in the
tail. The statistic will be bounded [0,1], where zero indicates distributions
with no overlapping probability mass, and one indicates exact agreement.
Table A provides the tail-agreement statistics for the example distributions.
Without a credible alternative distribution, this tail-agreement statistic
provides a relative rather than an absolute measure. However, it can be
used to test the robustness of the similarity to the parameters (see table B).
The results in table B demonstrate that the similarity of the models holds
for a reasonably wide range of parameters. The models begin to diverge
at a very high ratio of default rate volatility to default probability, particu-
larly for very low or very high default probabilities. Accordingly, in very
high quality (AA or better) or very low quality (B or worse) portfolios,
model selection can make a difference, though there are scant data on
which to base such a selection. In a portfolio with only moderate weight
in very high or very low quality sub-portfolios, these differences should
not be significant in aggregation.
U] Impact of parameter inconsistency. This finding of similarity should
be taken with caution, as it hinges on harmonising parameter values. In
practice, the parameters will vary by estimation technique. The different es-
timation techniques appropriate to different joint-default parameters may
result in inconsistent default rate volatility. Even mean default probabilities
may vary considerably depending on the estimation technique, sample, etc.
Unsurprisingly, when the parameters do not imply consistent mean and
standard deviation of default rate distribution, the result is that the models
are significantly different. This case is illustrated by an example of three pa-
rameter sets that are not consistent, though plausibly obtainable for the
same portfolio (see table C). Within any one of these three parameter sets,
a comparison of the models yields results similar to figure 4 and table A —
tail-agreement statistics average 91% and range from 82% to 95%. Large dif-
ferences arise when the models are compared across the inconsistent pa-
rameter sets (see figure 5) — tail-agreement statistics average only 76% and
range from 65% to 85%, even when comparing the same model applied to
each of the inconsistent parameter sets. The differences in parameters, well
within the typical range of estimation error, have much greater impact than
model differences in this example.

4. Default rate distributions compared

A. Tail-agreement statistics for the
example distributions

Merton versus econometric 94.90%
Merton versus actuarial 93.38%
Econometric versus actuarial 88.65%
B. Tail-agreement statistics v.
parameter values
o/p
0.50 1.00 2.00 3.00
98.10% 95.94% 91.16% 89.12%
0.05% 93.53% 88.50% 81.17% 78.99%
91.71% 84.70% 73.13% 69.04%
97.92% 95.57% 91.15% 88.40%
0.10% 93.75% 88.94% 82.16% 80.40%
91.73% 84.78% 73.95% 69.73%
97.61% 94.93% 90.35% 87.86%
0.25% 94.11% 89.73% 83.87% 82.92%
91.79% 84.97% 74.83% 71.60%
97.33% 94.41% 89.91% 88.09%
P 0.50% 94.42% 90.56% 85.71% 85.61%
91.88% 85.30% 76.15% 74.28%
97.06% 93.97% 89.89% 88.97%
1.00% 94.93% 91.69% 88.29% 89.38%
92.04% 85.93% 78.57% 78.72%
96.62% 93.62% 90.77% 91.33%
2.50% 95.82% 93.94% 93.65% 94.68%
92.62% 87.79% 84.77% 87.53%
96.33% 93.85% 92.79% 94.59%
5.00% 97.02% 96.70% 95.24% 81.79%
93.55% 90.87% 91.38% 79.96%
96.21% 94.92% 95.79% na
10.00% 98.55% 95.57% 72.95% na
95.45% 95.22% 72.41% na

na = not applicable because it is an unreasonable combination of parameters —
model results become unstable. Each cell contains tail-agreement statistics for
Merton v. econometric, Merton v. actuarial and econometric v. actuarial

Conclusions

On the surface, the credit risk portfolio models studied here seem to be
quite different. Deeper examination reveals that the models belong to a
single general framework, which identifies three critical points of com-
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C. Hypothetical inconsistent parameter values

p o c P o
1 2.26% 1.70% —2.00 8.5% 1.767
2 1.52% 1.71% —-2.16 14.4% 0.790
3 1.54% 2.63% -2.16 26.2% 0.343

1 4

! In the inconsistent parameter case, the parameter sets
appropriate to selected model

parison — the default rate distribution, the conditional default distribution,
and the convolution/aggregation technique. Differences were found to be
immaterial in the last two of these, so that any significant differences be-
tween the models must arise from differences in modelling joint-default
behaviour which manifest in the default rate distribution. Further, when
the joint-default parameter values are harmonised to a consistent expres-
sion of default rate and default rate volatility, the default rate distributions
are sufficiently similar as to cause little meaningful difference across a broad
range of reasonable parameter values. Any significant model differences
can then be attributed to parameter value estimates that have inconsistent
implications for the observable default rate behaviour.

Parameter inconsistency is not a trivial issue. A “naive” comparison of
the models, with parameters estimated from different data using different
techniques, is quite likely to produce significantly different results for the
same portfolio. The conclusions of empirical comparisons of the models
will vary according to the degree of difference in parameters.” In such
comparisons, it is important to understand the proportions of “parameter
variance” and “model variance” if different results are produced for the
same portfolio. The findings in this paper suggest that “parameter vari-
ance” is likely to dominate. Future studies should focus on the magnitude
of parameter differences and the sensitivity of results to these differences.

Parameter inconsistency can arise from two sources: estimation error,
which could arise from small sample size or other sampling issues; or
model mis-specification. While default rate volatility may be immediately
observable, even long periods of observation provide small sample size
and risk non-stationarity. At the other extreme, asset correlations can be
measured with reasonable sample size in much shorter periods, albeit with
the risk of mis-specification in the return distributions and default causal-
ity assumptions in the translation to default rate volatility. Rather than con-
clude that parameter inconsistency potentially constitutes irreconcilable
differences between the results of these models, this paper concludes that
because the models are so closely related, the estimates are complemen-
tary and should provide improved accuracy in parameter estimation with-
in the generalised framework as a whole.

A useful metaphor can be drawn from the success of the value-at-risk
framework in modelling market risk. VAR has become the industry stan-

5. Conditional default rates for different
models compared

B U \' Model for comparison'
0.0128 4.00 0.70 Econometric

0.0192 4.60 0.95 Actuarial

0.0449 4.95 1.30 Merton

‘models for comparison” were selected arbitrarily. Figures in bold indicate parameters

dard and the basis for regulatory capital requirements. But in practice, VAR
encompasses a variety of significantly different modelling and parameter
estimation techniques, eg, historical simulation versus variance-covariance,
delta-gamma versus exact Monte Carlo simulation, etc. The underlying co-
herence of the VAR concept — that risk is measured by combining the re-
lationship between the value of trading positions to market variables with
the distribution of those underlying market variables — ensures a consis-
tency sufficient for widespread acceptance and regulatory change. Simi-
larly, the underlying coherence of these new sophisticated credit risk
portfolio models should allow them to overcome differences in calcula-
tion procedures and parameter estimation. Rather than dissimilar compet-
ing alternatives, these models represent an emerging industry standard for
credit risk management and regulation. l

Dr H Ugur Koyluoglu is an associate consultant at Oliver, Wyman & Com-
pany. Andrew Hickman is in the risk management and quantitative analy-
sis department at CSFP Capital, an indirect subsidiary of Credit Suisse
Financial Products. The authors wish to thank Andrew Cross, Frank
Diebold, Tom Garside, Marc Intrater, Andrew Kuritzkes, Hashem Pesaran,
Til Schuermann, James Wiener and Tom Wilde for providing helpful com-
ments and discussions. All errors are the responsibility of the authors
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10 For example, Isda (1998) and Roberts & Wiener (1998) compare the results of sev-
eral models on test portfolios. The former finds that model results are fairly consistent,
while the latter finds that the models may produce quite different results for the same
portfolio using parameters independently selected for each model
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