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H In the natural gas and power industries, daily spot prices 
are presumed to be governed by mean-reversion. As argued in 
Mastrangelo (2007), we believe mean-reversion derives from 
daily supply and demand, which are either fairly constant 
or mean-reverting, respectively. And since storage in these 
industries is either limited or non-existent for carrying over 
supply to higher demand times, natural gas and power spot 
prices tend to mean-revert with demand. 

Evidence of this mean-reversion exists: as natural gas and 
power prices typically trade within upper and lower bounds 
and volatility term-structures of their forward prices are 
downward sloping. The former indicates bounded variances 
over time, which is consistent with mean-reversion and the 
latter indicates that the effects of price shocks are expected to 
dissipate over time, which occurs with mean-reversion. 

Estimating the speed of mean-reversion is important since 
the speed determines the strength of expected spot price 
trends, and, hence, the value of certain spot-price derivatives.1

However, previous speed estimates on US natural gas and 
power prices indicate speeds are usually slight and often insig-
nificant. Ghazi & Sivothayan (2007) questions whether mean-
reversion exists at all in current energy prices. We show that 
the usual estimates of mean-reversion for prices on commodi-
ties like natural gas and power can be biased heavily towards 
low and insignificant values by injudicious choices of estima-
tion techniques and sampling. 

Ordinary least squares (OLS) and maximum-likelihood are 
the standard techniques for estimating mean-reversion speeds 
and are usually applied to fit a simple first order autoregressive 
(AR(1)) model using large samples of spot prices on power, 
natural gas or oil/products. We explain that this approach 

tests not only for the hypothesis of mean-reversion, but also 
for the implicit (and apparently unintended) hypothesis that 
only a constant long-run mean governs the spot process. We 
show that a violation of the implicit hypothesis results in low 
and usually insignificant mean-reversion speed estimates, 
even when true mean-reversion is extremely high. Specifi-
cally, a sample in which the long-run mean truly varies may 
imply that no strong reversion exists towards the one constant 
mean implied from the estimation’s intercept term. And since 
natural gas and power prices are either seasonal or appear to 
possess stochastic long-run means, the hypothesis of a constant 
long-run mean is usually violated in samples. 

We contribute to the literature by characterising the nature 
of and deriving a formula for this bias in simpler cases; we also 
give a stark example of it. 

Previous studies of mean reversion
In previous studies, Pilipovic (1998), Clewlow & Strickland 
(2000) and Eydeland & Wolyniec (2003) find low to 
moderate mean-reversion speed estimates on large samples 
of various energy commodities. Pilipovic (1998) introduces 
a harmonic function in her estimation to capture the 
seasonality of different energy commodities; however, 
her speed estimates are still quite low. She estimates 
mean-reversion from short-term forward prices (not spot 
prices), which one may argue have no mean-reversion in 
expectation, and we are unsure if her harmonic function 
correctly captures the true seasonality in her samples. Ghazi 
& Sivothayan (2007) documents findings of no significant 
mean-reversion in large samples on crude oil and natural 
gas prices. However, they do document significant mean-
reversion in these commodities over sub-samples in which 
price levels are fairly stable: that is, the long-run mean 
appears to vary little within the sub-samples. 

Current estimates of mean-reversion speeds for energy commodities 

like natural gas and power may be strongly biased toward zero.  

Cliff Parsons explains this bias, derives a formula for it in simpler cases, 

and gives evidence of it for estimates on US natural gas prices

Explaining bias in mean-reversion
speed estimates for energy prices

1. One such derivative is a natural gas storage lease. The holder of such a lease may buy and sell 
natural gas to inject into or withdraw from storage, respectively. By buying and selling at daily prices, 
the lease-holder attempts to profit from daily (mean-reverting) price trends. 
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Three studies that find high mean-reversion are Knittel & 
Roberts (2001), Benth & Benth (2004) and Pilipovic (2007). 
Knittel & Roberts (2001) finds high and significant estimates 
of mean-reversion speed in hourly power prices; however, 
we are unsure of how the samples in this study do or do not 
violate the implicit hypothesis mentioned above.

In Benth & Benth (2004), the authors find high and signif-
icant mean-reversion in natural gas spot prices, but not for 
Brent crude oil prices. In their estimations, the authors use 
a harmonic function to account for the varying long-run 
mean in their sample of natural gas prices, thus avoiding 
violating the implicit hypothesis. However, they do not fit 
such a harmonic to their oil prices, and the graph of their oil 
price sample appears to contain a varying long-run mean, 
perhaps leading to their low mean-reversion speed estimates. 
Pilipovic (2007) de-seasonalises spot prices for various 
energy commodities and finds high mean-reversion for 
power prices (which contrasts from her previous work), but 
not for natural gas prices. 

In the past, we have used a different estimation method, 
one that controls for a stochastic long-run mean within 
samples, and have found evidence that the mean-reversion 
speed in US natural gas prices is very high: over 70. For that 
method, historical daily and forward prices were obtained 
and used in a two-factor tree model (one of the two factors 
shocks the long-run mean) to calculate expected trading 
values and simulate actual trading values for certain spot-
price dependent derivatives. The mean-reversion speed and 
other estimated parameters were chosen to best fit the actual-
to-expected trading values. Detailing this method further is 
beyond this paper’s scope.

A formula for bias in mean-reversion  
speed estimates 
We now recreate the standard model used to estimate mean-
reversion speeds. Afterwards, we assume a price sample 
containing a simple time-varying long-run mean and derive 
a formula for OLS estimation bias based on it. To develop the 
standard model, assume the following for the spot-price process:
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(1)

where
St = the spot price for delivery at time t 
L = the process long-run mean 
a = the process mean-reversion speed 
σ = the process instantaneous volatility 
zt = a Brownian motion 

Converting to log-prices and solving gives the standard 
model used in estimating mean-reversion: 

	
ln St+∆t( ) = α + β ln St( ) + εt+∆t 	

(2)

where:
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The model in equation (2) appears in such literature as 

Pilipovic (1998), Clewlow & Strickland (2000), Knittel & 
Roberts (2001), Eydeland & Wolyniec (2003), and Benth & 
Benth (2004). If we have a sample of daily spot prices, then 
we let ∆t =1/365 (one day expressed in years) and commence 
with estimating α and β. The estimate of β is then inverted 
to obtain the estimate for the mean-reversion speed, a. 
However, the underlying hypothesis tested in equation 
(2) is not obvious and bears on the before-mentioned bias. 
The true hypothesis tested is a conjunction of two hypoth-
eses: Does mean-reversion govern the process, and does the 
process have a constant long-run mean? The former hypoth-
esis is explicit while the latter is implicit. 

We suspect that testing the latter hypothesis is unintended 
by most authors. Rejection of either hypothesis leads to low 
and possibly insignificant mean-reversion speed estimates, and 
rejection of only the latter, implicit hypothesis leads to the 
bias. For example, if samples include periods in which spot 
prices revert around higher means at times and lower means 
at other times, then mean-reversion speed estimates will be 
low since spot prices do not appear to be strongly reverting 
around the one mean embedded in the estimate of α. We now 
derive a formula for this bias under the assumptions that our 
sample is governed by one long-run mean for the first several 
observations, by a different long-run mean for the remaining 
observations, and that OLS estimation is employed. 

We assume a sample of daily spot prices with size n=n1+n2, 
where the process for the first n1> 0 prices is governed by 
long-run mean L1, while the process for the other n2> 0 
prices is governed by long-run mean L2. We also assume 
that L1< L2 and that the processes for both sub-samples are 
governed by the same mean-reversion speed, a, and vola-
tility, σ. This setup2 and equations (1) and (2) imply that 
two intercepts exist in reality: α1 corresponding to L1 and 
α2 corresponding to L2. If we do not account for the time-
varying long-run mean in our sample, then our OLS esti-
mate of β (which by (2) is inverted to obtain the estimate of 
the mean-reversion speed) is as follows: 
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Explaining bias in mean-reversion

 2. Extending this setup to three or more long-run means becomes apparent as we proceed. 
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Using equation (2) to substitute for Yi and Y

0
, the right-

hand side of equation (3) becomes: 
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where: 
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Combining terms and taking expectations of both sides of 
equation (4) gives: 
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(5)

The third term on the right-hand side of equation (5) is 
insignificant; if the second term were also insignificant, then β̂ 
would be a fairly unbiased estimator of β. However, in this case 
it is significant, and we can see this by examining its numerator. 
The first sum in the numerator tends to be positive since the 
products being summed are typically both negative: α1 is less 
than α by assumption, and Yi−1 tends to be less than Y−1 over the 

first n1 observations. By similar reasoning, one sees that the two 
terms in the products of the numerator’s second sum are typi-
cally both positive. And since the denominator is always posi-
tive, the whole second term on the right-hand side of equation 
(5) tends to be positive under our assumptions. 

The amount of bias can be quite large, and we can see this 
by transforming equation (5) a little further. Extrapolating 
from equation (2), we see that: 
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Substituting these expressions into the second term of equa-
tion (5) gives the following: 
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(6)

Finally, if the deviations of U from its mean are approxi-
mately equal to the deviations of Y from its mean over each of 
the two sums in the numerator, then the expectation on the 
right-hand side of (6) is approximately 1.0, and the estimate of 
β is approximately: 

	
E β̂ β β( ) ≈ + −( ) =1 1

	
(7)

For example, the bias approaches (1−β) for a sample having 
prices propagated with a large, true mean-reversion speed, 
coupled with large differences in long-run means between 
sub-samples of the sample, and where prices propagated with 
each mean form a significant proportion of the sample. Such 
a scenario makes the U and Yi deviations close. We give an 
example of this in the next section. 

The approximation in (7) shows that higher, true mean-
reversion speeds, which have true betas both positive and 
much lower than 1.0, may be counteracted with greater bias, 
making the bias especially insidious. This bias, in which β is 
truly less than one while β̂ is biased upward towards one, is 
opposite of the unit-root bias.3 The above derivations confirm 
our suspicions that, even if true mean-reversion speed is very 
high, insignificant mean reversion speed estimates may result 
from violating the before-mentioned implicit hypothesis.

3. The unit-root bias occurs for processes like equation (2) where β is close to one and least-squares is 
employed: The estimate β̂ is biased downward. Greene (1993) summarises this bias.
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Examples of bias in mean-reversion  
speed estimates
Spot price processes for energy commodities like natural 
gas and power appear to have long-run means that blend 
seasonality with stochastic behaviour. Figure 1 illustrates 
this for prices on daily-delivery US natural gas traded at 
Henry Hub, Louisiana. These prices possess volatilities that 
can easily exceed 80% per year; however, these prices tend 
to revert towards a long-run mean level that wanders within 
a band of prices. Seasonality tends to push this level higher 
in winter than in summer due to US demand for natural gas 
being higher in winter. The data plot in figure 1 shows that 
the long-run mean for US natural gas is more complicated 
than what is assumed in the usual estimation models, which 
can lead to the bias explained previously. We give evidence 
of this bias later in this section when using US natural gas 
prices, but for now, we illustrate the large bias formulated in 
(7) with a simple example. 

We generated 200 independently and normally distrib-
uted e terms under the assumptions that a = 365, σ= 50%, 
and ∆t = 1/365 (one-day). Using those terms and assuming 
L = $5.00 for the first hundred observations, L = $8.00 for the 
second hundred observations, and S0= $4.80, we generated 
200 daily spot prices. Thus, n1= n2= 100. Our chosen mean-
reversion speed is high by most measures to illustrate the 
bias more clearly, but the price level, volatility, and long-run 
mean spread are realistic regarding US natural gas spot prices 
as seen in figure 1. 

Next, we performed three OLS regressions: one on the first 
half of the sample, one on the second half, and one on the 

whole sample. The results for the estimates of a (â), given in 
table 1, show that although strong mean-reversion is present, 
the presence of a greatly varying long-run mean in the 
sample can bias the mean-reversion speed estimate strongly 
towards zero, as our derivations leading to the approxima-
tion in (7) show.

We examine figure 2 for intuition about this example. 
This figure shows a hypothetical sample in log-price space 
from a price process that varies around a lower long-run 
mean part of the time, and a higher long-run mean the rest 
of the time. Such a process would produce two clusters of 
outcomes, similar to those shown in the figure, in which 
each cluster tends to lie around a corresponding regression 
line. The process would also cause each cluster to center 
around the 45-degree line from the origin where both the x 

T1. An example of OLS mean-reversion speed bias
Source: based on data generated by the author for illustration purposes

Sample â Null: a = 0
First half 270.68 reject

Second half 354.70 reject

Whole sample 3.02 do not reject

Null hypothesis was tested at the 95% level. Prices were 
propagated with a mean-reversion speed of 365.0, a long-
run mean of $5.00 for the first sample half, and a long-run 
mean of $8.00 for the second sample half. The whole-
sample estimate illustrates the downward bias caused by a 
varying long-run mean within the sample
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F1. Daily delivery: Henry Hub
Prices for daily delivery at Henry Hub, Louisiana USA, for the period April 1, 1999 to April 3, 2006
Source: Norman’s Historical Data
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and y co-ordinates approximately equal the corresponding 
log-long-run mean. The positive slope of each cluster’s 
regression line is consistent with the price process and 

indicates that previous outcomes and their 
subsequent outcomes tend to remain on the 
same side of the corresponding long-run 
mean; the slope being less than one indicates 
that subsequent outcomes are closer to the 
corresponding long-run mean than previous 
outcomes in expectation. The formula for 
equation (2) implies these relationships since 
the slope coefficient essentially weights the 
previous log-price and log-long-run mean for 
forecasting the next log-price. 

A simple OLS regression on such a sample 
tends to fit the sample’s two clusters of 
outcomes with a line close to the 45-degree 
line from the origin. Thus, β̂ for this fit is 
close to one, which implies a mean-reversion 
speed estimate of close to zero. This result is 
what our derivations leading to the approxi-
mation in (7) show. 

We now apply this intuition to actual data. 
US natural gas prices indicate the presence of 
a varying long-run mean – for example, the 
seasonal winter/summer price spread, which 
can cause multiple clusters of outcomes in 
large samples. The graph of these outcomes 
in the log-price space of figure 2 typically 
shows a ‘cloud’ of points along the 45-degree 
line from the origin. Therefore, when testing 
for mean-reversion, we must sample in a way 
that controls for a varying long-run mean. 

We choose a simple approach: Use small samples such as 21 
days. By using such small samples, we hope the long-run 
mean within the samples varies little. 
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F3. Speed estimates
Mean-reversion speed estimates by month from 1999 to 2006      Source: estimated using Norman’s Historical Data
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F2. Example of price dispersion caused by a varying long-run mean
The graph illustrates a sample where mean-reverting outcomes are 
governed by one of two long-run means at any one time. Each of the two 
thin lines fits outcomes associated with their respective long-run mean. The 
thick line is a 45-degree line from the origin and would closely coincide with 
an OLS fit to the whole sample    Source: based on data generated by the author for illustration purposes
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The price data are for Henry Hub, span 1999 to 2006, 
and are gas-daily prices.4 Two arbitrary samples of size 21 
were taken for each of the seven years: one sample from the 
summer, and one from the winter. Of the 14 mean-rever-
sion speed estimates, eight were over 90.0, three of these were 
significant at the 95% level, and seven of these were signifi-
cant at the 90% level.5 Finding such significant results on 
such small samples is noteworthy, especially considering how 
‘noisy’ small samples on natural gas prices are. Only three of 
the 14 estimates were less than 50.0, and these were statisti-
cally insignificant. Alternatively, the whole sample of 1,485 
prices produced a mean-reversion speed estimate of only 3.40, 
which was just significant at the 95% level and was much 
lower than our estimates derived from smaller samples. Such 
behaviour is consistent with assumptions underlying the deri-
vation of (7) and suggests that US natural gas mean-reversion 
speeds could be much higher than previously documented. 

Finally, and as an ancillary exercise, we examined our esti-
mates for seasonality. We estimated mean-reversion speeds 
per month using prices for each calendar month in our seven-
year sample. The results are plotted in figure 3 and show that 
the estimates do not appear to have any obvious seasonality. 
Also, and consistent with the results just above, 72 of the 84 
monthly estimates were higher than the whole-sample esti-
mate of 3.40, with the average of the 84 estimates being 43.5. 

Conclusion 
We have shown that, by using standard estimation tech-
niques, mean-reversion speed estimates can be biased greatly 
towards zero if samples include prices propagated with a 
varying long-run mean. Such samples for natural gas and 
power prices are common since these prices are typically 
seasonal, and, at the very least, appear to have stochastic 
long-run means. We characterise and derive a formula for 
this bias under simple conditions. 

Sampling and estimation techniques must change when 
estimating mean-reversion on energy prices that are 
influenced by seasonality or varying long-run means. We 
suggest, as does Ghazi & Sivothayan (2007), the employment 
of two-factor mean-reverting models for testing, at the 
very least. And although our research gives some direction 
on how current techniques should change, we leave such 
innovations to further research.
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