\ Current estimates of mean-reversion speeds for energy commodities

. like natural gas and power may be strongly biased toward zero.
explains this bias, derives a formula for it in simpler cases,

- and gives evidence of it for estimates on US natural gas prices

Explaining bias in mean-reversion
speed estimates for energy prices

% In the natural gas and power industries, daily spot prices
are presumed to be governed by mean-reversion. As argued in
Mastrangelo (2007), we believe mean-reversion derives from
daily supply and demand, which are either fairly constant

or mean-reverting, respectively. And since storage in these
industries is either limited or non-existent for carrying over
supply to higher demand times, natural gas and power spot
prices tend to mean-revert with demand.

Evidence of this mean-reversion exists: as natural gas and
power prices typically trade within upper and lower bounds
and volatility term-structures of their forward prices are
downward sloping. The former indicates bounded variances
over time, which is consistent with mean-reversion and the
latter indicates that the effects of price shocks are expected to
dissipate over time, which occurs with mean-reversion.

Estimating the speed of mean-reversion is important since
the speed determines the strength of expected spot price
trends, and, hence, the value of certain spot-price derivatives.!

However, previous speed estimates on US natural gas and
power prices indicate speeds are usually slight and often insig-
nificant. Ghazi & Sivothayan (2007) questions whether mean-
reversion exists at all in current energy prices. We show that
the usual estimates of mean-reversion for prices on commodi-
ties like natural gas and power can be biased heavily towards
low and insignificant values by injudicious choices of estima-
tion techniques and sampling.

Ordinary least squares (OLS) and maximum-likelihood are
the standard techniques for estimating mean-reversion speeds
and are usually applied to fit a simple first order autoregressive
(AR (1)) model using large samples of spot prices on power,
natural gas or oil/products. We explain that this approach

1. One such derivative is a natural gas storage lease. The holder of such a lease may buy and sell
natural gas to inject into or withdraw from storage, respectively. By buying and selling at daily prices,
the lease-holder attempts to profit from daily (mean-reverting) price trends.
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tests not only for the hypothesis of mean-reversion, but also
for the implicit (and apparently unintended) hypothesis that
only a constant long-run mean governs the spot process. We
show that a violation of the implicit hypothesis results in low
and usually insignificant mean-reversion speed estimates,
even when true mean-reversion is extremely high. Specifi-
cally, a sample in which the long-run mean truly varies may
imply that no strong reversion exists towards the one constant
mean implied from the estimation’s intercept term. And since
natural gas and power prices are either seasonal or appear to
possess stochastic long-run means, the hypothesis of a constant
long-run mean is usually violated in samples.

We contribute to the literature by characterising the nature
of and deriving a formula for this bias in simpler cases; we also
give a stark example of it.

Previous studies of mean reversion

In previous studies, Pilipovic (1998), Clewlow & Strickland
(2000) and Eydeland & Wolyniec (2003) find low to
moderate mean-reversion speed estimates on large samples
of various energy commodities. Pilipovic (1998) introduces
a harmonic function in her estimation to capture the
seasonality of different energy commodities; however,

her speed estimates are still quite low. She estimates
mean-reversion from short-term forward prices (not spot
prices), which one may argue have no mean-reversion in
expectation, and we are unsure if her harmonic function
correctly captures the true seasonality in her samples. Ghazi
& Sivothayan (2007) documents findings of no significant
mean-reversion in large samples on crude oil and natural
gas prices. However, they do document significant mean-
reversion in these commodities over sub-samples in which
price levels are fairly stable: that is, the long-run mean

appears to vary little within the sub-samples.



Three studies that find high mean-reversion are Knittel &
Roberts (2001), Benth & Benth (2004) and Pilipovic (2007).
Knittel & Roberts (2001) finds high and significant estimates
of mean-reversion speed in hourly power prices; however,
we are unsure of how the samples in this study do or do not
violate the implicit hypothesis mentioned above.

In Benth & Benth (2004), the authors find high and signif-
icant mean-reversion in natural gas spot prices, but not for
Brent crude oil prices. In their estimations, the authors use
a harmonic function to account for the varying long-run
mean in their sample of natural gas prices, thus avoiding
violating the implicit hypothesis. However, they do not fit
such a harmonic to their oil prices, and the graph of their oil
price sample appears to contain a varying long-run mean,
perhaps leading to their low mean-reversion speed estimates.
Pilipovic (2007) de-seasonalises spot prices for various
energy commodities and finds high mean-reversion for
power prices (which contrasts from her previous work), but
not for natural gas prices.

In the past, we have used a different estimation method,
one that controls for a stochastic long-run mean within
samples, and have found evidence that the mean-reversion
speed in US natural gas prices is very high: over 70. For that
method, historical daily and forward prices were obtained
and used in a two-factor tree model (one of the two factors
shocks the long-run mean) to calculate expected trading
values and simulate actual trading values for certain spot-
price dependent derivatives. The mean-reversion speed and
other estimated parameters were chosen to best fit the actual-
to-expected trading values. Detailing this method further is
beyond this paper’s scope.

A formula for bias in mean-reversion

speed estimates

We now recreate the standard model used to estimate mean-
reversion speeds. Afterwards, we assume a price sample
containing a simple time-varying long-run mean and derive

a formula for OLS estimation bias based on it. To develop the

standard model, assume the following for the spot-price process:

ds,
S—za(ln(L)—ln(S,))dz+0dzt 0

'
where
§, = the spot price for delivery at time ¢
L = the process long-run mean
a = the process mean-reversion speed
G = the process instantaneous volatility

z,=a Brownian motion

Converting to log-prices and solving gives the standard

model used in estimating mean-reversion:

In(S,, o )=0+PBIn(S,)+&, @
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The model in equation (2) appears in such literature as
Pilipovic (1998), Clewlow & Strickland (2000), Knittel &
Roberts (2001), Eydeland & Wolyniec (2003), and Benth &
Benth (2004). If we have a sample of daily spot prices, then
we let Ar=1/365 (one day expressed in years) and commence
with estimating o and B. The estimate of P is then inverted
to obtain the estimate for the mean-reversion speed, a.
However, the underlying hypothesis tested in equation
(2) is not obvious and bears on the before-mentioned bias.
The true hypothesis tested is a conjunction of two hypoth-
eses: Does mean-reversion govern the process, and does the
process have a constant long-run mean? The former hypoth-
esis is explicit while the latter is implicit.

We suspect that testing the latter hypothesis is unintended
by most authors. Rejection of either hypothesis leads to low
and possibly insignificant mean-reversion speed estimates, and
rejection of only the latter, implicit hypothesis leads to the
bias. For example, if samples include periods in which spot
prices revert around higher means at times and lower means
at other times, then mean-reversion speed estimates will be
low since spot prices do not appear to be strongly reverting
around the one mean embedded in the estimate of o.. We now
derive a formula for this bias under the assumptions that our
sample is governed by one long-run mean for the first several
observations, by a different long-run mean for the remaining
observations, and that OLS estimation is employed.

We assume a sample of daily spot prices with size n=n +n,,
where the process for the first n,>0 prices is governed by
long-run mean L, while the process for the other n,>0
prices is governed by long-run mean L,. We also assume
that L <L, and that the processes for both sub-samples are
governed by the same mean-reversion speed, a, and vola-
tility, 6. This setup? and equations (1) and (2) imply that
two intercepts exist in reality: o corresponding to L, and
o, corresponding to L,. If we do not account for the time-
varying long-run mean in our sample, then our OLS esti-
mate of B (which by (2) is inverted to obtain the estimate of
the mean-reversion speed) is as follows:

(Y -T) (¥, -7

f=1=L 3)

2. Extending this setup to three or more long-run means becomes apparent as we proceed.
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where:

B = the OLS estimate of 3
Y, =In(S;),i=0,..,n

v i=1
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n
n—1
XY
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Using equation (2) to substitute for ¥, and ?0, the right-
hand side of equation (3) becomes:
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Combining terms and taking expectations of both sides of

equation (4) gives:
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The third term on the right-hand side of equation (5) is
insignificant; if the second term were also insignificant, then 3
would be a fairly unbiased estimator of 8. However, in this case

it is significant, and we can see this by examining its numerator.

The first sum in the numerator tends to be positive since the
products being summed are typically both negative: o is less
than o by assumption, and ¥, | tends to be less than ¥ over the

3. The unit-root bias occurs for processes like equation (2) where B is close to one and least-squares is
employed: The estimate B is biased downward. Greene (1993) summarises this bias.
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first n observations. By similar reasoning, one sees that the two
terms in the products of the numerator’s second sum are typi-
cally both positive. And since the denominator is always posi-
tive, the whole second term on the right-hand side of equation
(5) tends to be positive under our assumptions.

The amount of bias can be quite large, and we can see this
by transforming equation (5) a little further. Extrapolating
from equation (2), we see that:

2
o, =(1-B) [m(g)-j) fori=1,2.

a

LetU; =In(L;), i=1,2.
Then U = (ﬂU, +”—2U2) and
n n

(o, —@)=(1-B)(U;, - T) fori=1,2.
Substituting these expressions into the second term of equa-
tion (5) gives the following:

E(B)=B

+(1-B)E [ ©)

Finally, if the deviations of U from its mean are approxi-
mately equal to the deviations of Y from its mean over each of
the two sums in the numerator, then the expectation on the
right-hand side of (6) is approximately 1.0, and the estimate of
B is approximately:

E(B)=B+(1-p)=1 )

For example, the bias approaches (1—B) for a sample having
prices propagated with a large, true mean-reversion speed,
coupled with large differences in long-run means between
sub-samples of the sample, and where prices propagated with
each mean form a significant proportion of the sample. Such
a scenario makes the U and Y, deviations close. We give an
example of this in the next section.

The approximation in (7) shows that higher, true mean-
reversion speeds, which have true betas both positive and
much lower than 1.0, may be counteracted with greater bias,
making the bias especially insidious. This bias, in which B is
truly less than one while fﬁ is biased upward towards one, is
opposite of the unit-root bias.”> The above derivations confirm
our suspicions that, even if true mean-reversion speed is very
high, insignificant mean reversion speed estimates may result

from violating the before-mentioned implicit hypothesis.
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F1. Daily delivery: Henry Hub

Source: Norman’s Historical Data

Prices for daily delivery at Henry Hub, Louisiana USA, for the period April 1, 1999 to April 3, 2006

Examples of bias in mean-reversion

speed estimates

Spot price processes for energy commodities like natural
gas and power appear to have long-run means that blend
seasonality with stochastic behaviour. Figure 1 illustrates
this for prices on daily-delivery US natural gas traded at
Henry Hub, Louisiana. These prices possess volatilities that
can easily exceed 80% per year; however, these prices tend
to revert towards a long-run mean level that wanders within
a band of prices. Seasonality tends to push this level higher
in winter than in summer due to US demand for natural gas
being higher in winter. The data plot in figure 1 shows that
the long-run mean for US natural gas is more complicated
than what is assumed in the usual estimation models, which
can lead to the bias explained previously. We give evidence
of this bias later in this section when using US natural gas
prices, but for now, we illustrate the large bias formulated in
(7) with a simple example.

We generated 200 independently and normally distrib-
uted € terms under the assumptions that a=365, 0=50%,
and At =1/365 (one-day). Using those terms and assuming
L=9%5.00 for the first hundred observations, L =$8.00 for the
second hundred observations, and § = $4.80, we generated
200 daily spot prices. Thus, n,=n,=100. Our chosen mean-
reversion speed is high by most measures to illustrate the
bias more clearly, but the price level, volatility, and long-run
mean spread are realistic regarding US natural gas spot prices
as seen in figure 1.

Next, we performed three OLS regressions: one on the first

half of the sample, one on the second half, and one on the

July 2008

whole sample. The results for the estimates of a (a), given in
table 1, show that although strong mean-reversion is present,
the presence of a greatly varying long-run mean in the
sample can bias the mean-reversion speed estimate strongly
towards zero, as our derivations leading to the approxima-
tion in (7) show.

We examine figure 2 for intuition about this example.
This figure shows a hypothetical sample in log-price space
from a price process that varies around a lower long-run
mean part of the time, and a higher long-run mean the rest
of the time. Such a process would produce two clusters of
outcomes, similar to those shown in the figure, in which
each cluster tends to lie around a corresponding regression
line. The process would also cause each cluster to center
around the 45-degree line from the origin where both the x

T1. An example of OLS mean-reversion speed bias

Source: based on data generated by the author for illustration purposes

Sample a Nul:a=0
First half 270.68 reject
Second half 354.70 reject
Whole sample 3.02 do not reject

Null hypothesis was tested at the 95% level. Prices were
propagated with a mean-reversion speed of 365.0, a long-
run mean of $5.00 for the first sample half, and a long-run
mean of $8.00 for the second sample half. The whole-
sample estimate illustrates the downward bias caused by a
varying long-run mean within the sample
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indicates that previous outcomes and their
subsequent outcomes tend to remain on the
same side of the corresponding long-run
mean; the slope being less than one indicates
that subsequent outcomes are closer to the
corresponding long-run mean than previous
outcomes in expectation. The formula for
equation (2) implies these relationships since
the slope coefficient essentially weights the
previous log-price and log-long-run mean for
forecasting the next log-price.

A simple OLS regression on such a sample
tends to fit the sample’s two clusters of
outcomes with a line close to the 45-degree
line from the origin. Thus, B for this fit is

close to one, which implies a mean-reversion

speed estimate of close to zero. This result is

what our derivations leading to the approxi-

> mation in (7) show.

We now apply this intuition to actual data.
(O’O) Yi_l US natural gas prices indicate the presence of
a varying long-run mean — for example, the

seasonal winter/summer price spread, which
F2. Example of price dispersion caused by a varying long-run mean can cause multiple clusters of outcomes in
The graphiillustrates a sample where mean-reverting outcomes are large samples. The graph of these outcomes
governed by one of two long-run means at any one time. Each of the two
thin lines fits outcomes associated with their respective long-run mean. The
thick line is a 45-degree line from the origin and would closely coincide with
an OLS fit to the whole sample  source: based on data gencrated by the author for illustration purposes

in the log-price space of figure 2 typically
shows a ‘cloud’ of points along the 45-degree
line from the origin. Therefore, when testing

for mean-reversion, we must sample in a way

that controls for a varying long-run mean.

and y co-ordinates approximately equal the corresponding We choose a simple approach: Use small samples such as 21
log-long-run mean. The positive slope of each cluster’s days. By using such small samples, we hope the long-run
regression line is consistent with the price process and mean within the samples varies little.
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The price data are for Henry Hub, span 1999 to 2006,
and are gas-daily prices.! Two arbitrary samples of size 21
were taken for each of the seven years: one sample from the
summer, and one from the winter. Of the 14 mean-rever-
sion speed estimates, eight were over 90.0, three of these were
significant at the 95% level, and seven of these were signifi-
cant at the 90% level.® Finding such significant results on
such small samples is noteworthy, especially considering how
‘noisy’ small samples on natural gas prices are. Only three of
the 14 estimates were less than 50.0, and these were statisti-
cally insignificant. Alternatively, the whole sample of 1,485
prices produced a mean-reversion speed estimate of only 3.40,
which was just significant at the 95% level and was much
lower than our estimates derived from smaller samples. Such
behaviour is consistent with assumptions underlying the deri-
vation of (7) and suggests that US natural gas mean-reversion
speeds could be much higher than previously documented.

Finally, and as an ancillary exercise, we examined our esti-
mates for seasonality. We estimated mean-reversion speeds
per month using prices for each calendar month in our seven-
year sample. The results are plotted in figure 3 and show that
the estimates do not appear to have any obvious seasonality.
Also, and consistent with the results just above, 72 of the 84
monthly estimates were higher than the whole-sample esti-
mate of 3.40, with the average of the 84 estimates being 43.5.

Conclusion

We have shown that, by using standard estimation tech-
niques, mean-reversion speed estimates can be biased greatly
towards zero if samples include prices propagated with a
varying long-run mean. Such samples for natural gas and
power prices are common since these prices are typically
seasonal, and, at the very least, appear to have stochastic
long-run means. We characterise and derive a formula for
this bias under simple conditions.

Sampling and estimation techniques must change when
estimating mean-reversion on energy prices that are
influenced by seasonality or varying long-run means. We
suggest, as does Ghazi & Sivothayan (2007), the employment
of two-factor mean-reverting models for testing, at the
very least. And although our research gives some direction
on how current techniques should change, we leave such

innovations to further research.
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