The Masterclass series continues with a discussion of a general multi-factor,

multi-commodity model and the process for estimating parameters from

historical data. By

and

Gaining from complexity:
MFEFMC models

% In our previous two articles, we discussed the modelling of
swing contracts based on a single-factor model for describing
the evolution of gas prices. Single-factor models have a wide
range of applicability in energy valuation and risk manage-
ment, and are relatively simple to understand and parameter-
ise. However, the simplicity of single-factor models can be a
double-edged sword. While these models can capture much

of the dynamics of real life processes in many circumstances,
by definition they only use a small amount of the potential
information available from the market. In particular, one major
drawback of single-factor models is they imply that instanta-
neous changes in forward prices at all maturities are perfectly
correlated. Increasingly, energy risk practitioners are attracted
to modelling frameworks that avoid such simplifications. Where
enough data is available, a more general multi-factor model can
be used to capture extra information about the price dynam-
ics, and this is the modelling framework that we concentrate on
here. It is also relatively straightforward to extend such a multi-
factor model to incorporate multiple commodities. This article
discusses a general multi-factor, multi-commodity (MFMC)
model and describes the process of estimating parameters from
historical data.! In our next Masterclass article we will use this
underlying model in a practical application that involves the
simulation of multiple energy forward curves.

Figure 1 illustrates the historical evolution of a forward curve
for Henry Hub natural gas (HNG) from January 2, 2007 to
December 14, 2007. For clarity not all available curves in this
period are shown. Each forward curve consists of 24 data points
representing the next 24 monthly maturities; that is, on each
calendar date we plot the nearby contract, the second nearby
and so on, out to the 24th nearby contract. The first few curves
in January 2008 therefore contain forward prices for contracts

1. This article can be seen as an extension of Clewlow, Strickland & Kaminski (2001)
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maturing each month from February 2007 to January 2009,
while the last curves in December 2007 contain prices for
contracts maturing from January 2007 to December 2009.

One important observation from figure 1 is that forward
prices of different maturities are not perfectly correlated — the
curves generally move up and down together, with the short
end of the curve exhibiting more volatility than the long end,
but they also change shape in apparently quite complex ways.
In order to capture this complex interaction of different points
along the forward curve we need more than a single factor of
uncertainty.

A general multi-factor model of the forward curve, which
can be represented by the following stochastic differential
equation (SDE);

dF(t,T)
T Y.0,(t, T)dz, (t)

= M

In this formulation F(¢,T) denotes a forward price for delivery
at time 7 (the maturity date) recorded on date #, and there are n
independent sources of uncertainty that drive the evolution of
the forward curve. Each source of uncertainty dzl.(t) has associ-
ated with it a volatility function 6(#,T), which determines by
how much, and in which direction, that random shock moves
each point of the forward curve. Note that it is possible to write
an equation for the dynamics of the spot price that is consistent
with the forward price dynamics — this is important in under-
standing how forward curve and spot dynamics are related, and
explains the link between many popular implementations of
equation (1) and some well known spot price models. We can
integrate equation (1), set the maturity date equal to the current
date (that is, T=1), and apply a further differentiation, leading
to the following SDE describing the evolution for the spot
price, where F(t,f) = S(f) defines the spot price:
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The term in square brackets, which defines the drift of the
spot process, involves the integration over the Brownian
motions, and hence the spot price process will, in general,
be non-Markovian. That is, it will depend on all the random
shocks that have occurred since the start of the evolution
at time zero. As a side note, for many energies such as the
natural gas and electricity markets, seasonality in the forward
price volatilities is an important feature in the evolution of
the forward curve. One way to deal with this seasonality is
to estimate volatility functions for each ‘season’, where the
season can be defined by the user to segregate the data to
represent for example ‘summer/winter’ or ‘summer/autumn/
winter/spring’. A more elegant approach is to extend equation
(1) to incorporate seasonality in the volatility functions by
representing the functions as the product of a time-dependent
spot volatility function and maturity-dependent volatility
functions. The general equation (1) therefore becomes:

dF(t,T) "

F(r.7) =Gs(’)i§0i (T —1)dz (1) 3)
where G(#) denotes the spot price volatility at time # and
6,(T—1) the n maturity-dependent volatility functions. In
this way, the maturity structure of the volatility functions
is normalised by the spot volatility and the volatility func-
tions then capture the correlation between forward prices
at different maturities independently of any seasonal effects.
For clarity in this article we have chosen not to model the
seasonality in this way, but it is a straightforward extension
of the analysis that we present.

Perhaps the main advantage of this forward curve model-
ling approach is the flexibility that the user has in choosing
both the number and form of the volatility functions. The
volatility functions can be determined in one of two general
ways: historically, from time series analysis; or implied from
the market prices of options. In this article we use the former
method to illustrate estimation of the volatility functions.

Using historical forward curve data, one method that can
be used to simultaneously determine both the number and
form of the volatility functions that drive the dynamics
of the forward curve is principal components analysis
(PCA) or eigenvector decomposition of the covariance

2. See Clewlow and Strickland (2000) for a detailed example of how to estimate vola-
tility functions in this way.
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matrix of the forward prices returns. The technique involves
calculating the sample covariances between pairs of forward
price returns in a historical time series to form a covari-
ance matrix. The eigenvectors of the covariance matrix yield
estimates of the factors driving the evolution of the forward
curve.

To illustrate the process of estimating the volatility func-
tions from historical data we consider a single commodity
with n factors®. After applying Ito’s lemma to equation (1) the
forward curve dynamics is written as:

AlnF(t,1+1;)=
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Equation (4) implies that changes in the natural logarithms of
the forward prices with relative maturities T, j=L,...,m are jointly
normally distributed. An annualised sample covariance matrix
of these forward prices (X) can be computed and decomposed

into a series of eigenvectors and eigenvalues such that;
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F1. Forward curve for Henry Hub natural gas during 2007

Source: Lacima Group
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The columns of I" are the eigenvectors. The eigenvalues ments at the short end of the forward curve. The surface will

represent the variances of the independent ‘factors’ that drive then typically decay to a lower value for the longer-dated
the forward points in proportions determined by the eigen- contracts. The smoothness of the surfaces will depend on the
vectors. The discrete volatility functions are then obtained as amount of ‘noise’ in the market, which may be due to illi-
ot 1+1,)= V_,,~«/7»_,~ % quidity in contrach beyond a certain maturity, or changes in
the market dynamics.

As an illustration of the outputs from this analysis in figure Once the covariance matrices have been calculated, the form
2 we show plots of the seasonal covariance matrices for of the volatility functions in equation (1) can be obtained as
HNG forward curve data. For convenience we have defined described above. In figure 3 we plot the first three volatility
the seasons to cover January to March, April to June, July functions for season 1 (the results for the other seasons are
to September, and October to December, but the user can very similar).
categorise the seasons by their own definitions. Note that in The results shown in figure 3 are typical of those found

order to obtain robust estimates we have used a longer history ~ when analysing energy market data. The first factor is positive
of forward curves (from January 2005 to December 2007) and  for all maturities, indicating that a shock to the system will

we have used the first 50 maturities. result in prices at all maturities to ‘shift’ in the same direction.
The covariance surfaces illustrated in figure 2 are typical This is generally the most significant factor and is similar to
of those found in energy markets. As you would expect, the effect that would be seen in a single-factor model. The
the largest covariance is observed between price move- second factor is a ‘tilt’ that causes the short and long maturity
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contracts to move in opposite directions. 50
The third factor is a ‘bending’ factor,

where the short and long ends of the “3
curve move in the opposite direction to 30 4

the middle of the curve. The second and
third factors (and potentially others) are
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what distinguishes this approach from
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a single-factor model, and allows the

realistic dynamics of the forward curve to
be captured in the model.
As we are dealing with 50 contracts in

this example, there are 50 factors that can 20 -

explain the variance of the evolution of
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the curve; however, only a few of these
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will be significant for explaining the vari- Sour

F3. Plot of the first three volatility functions for the HNG data for season 1

ation in the forward curve. The eigen-

values obtained in the previous step (see equation (6)) indicate
the importance of the corresponding eigenvectors (volatility
functions). In practice we find that two or three factors are
usually sufficient to explain the evolution of the observed
market data. For this example the eigenvalues for the 50
factors are shown in figure 4.

Clearly the first few factors have the largest contribution
towards explaining the dynamics of the forward price. In fact
for this example the first three factors explain 99.98% of the
movement in the prices, so for modelling purposes it is easy to
justify using only three factors to model the evolution of the
forward price.

Many of the problems faced by practitioners in the energy
risk management arena require the joint modelling of multiple
commodities. Spreads between one or more fuels and a power
price, for example, are key determinants in the valuation of
power plants and many derivative contracts. Efficient calcula-
tion of at-risk measures, such as value-at-risk, or cashflow-
at-risk type measures can be achieved by the simultaneous
joint evolution of all risk factors that underlie the contracts or
assets that form the portfolio. The multi-factor model in (1)
can be generalised further to describe the joint forward curve
dynamics of multiple commodities as:

AEAT) S (0T, (1)

F(.T) 5 ®)

where

¢ =1,...,m represents each different commodity from the
historical data and i = I,...,n_ indexes the volatility functions
for each commodity.

In this model the correlations between commodities are
defined by a correlation matrix for the Brownian motions.
The correlations between the Brownian motions driving
a particular commodity are zero, while the correlations
between the Brownian motions driving different commodities
represent the inter-commodity correlations.

As with the case of estimating volatility functions, we can

estimate the inter-commodity correlations from the joint
historical forward curve data. For each commodity, equation
(4) describes the discrete time evolution of the forward curve
in terms of the estimated volatility functions.

This can be expressed in the following matrix representation:

X(t1)=p(r)+ZE ©)

where

X(t) is the vector of changes in the natural logarithms of the
forward prices for each maturity at the specified timestep;
(2) is the vector of drift terms over the time step;

5 is the matrix of discrete volatility function terms;

€ is the unknown vector of standard normally distributed
random shocks.

Equation (9) can be solved to give estimates of the historical
Brownian shocks that generated the evolution of the forward
prices. We repeat this process for each commodity to obtain
a time series of vectors € for each commodity. The sample
correlation matrix of the random shocks can then be calcu-
lated to give the inter-commodity correlations for use in a
multi-commodity simulation.

As an example we consider the correlation between the
HNG forward prices used above, and NBP natural gas
forward prices covering the same period. The resulting
covariance matrix is shown in table 1.

For this example we have considered six volatility factors
for each commodity. The headers in table 1 and the hori-
zontal axes label the volatility factors: the factors for NBP are
denoted by N1, N2, ..., N6, and for HNG they are denoted
by H1, H2, ..., H6. As noted above, the covariance between
the Brownian motions of each commodity are zero, while
the non-zero covariances in the off-diagonal blocks repre-
sent the correlations between the Brownian motions driving
the different commodities. Also, the correlations between the
Brownian motions are used as input to a simulation model
based on equation (8) to generate appropriately correlated
normally distributed random shocks.

For single-commodity applications the model described
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F4. Eigenvalues for the 50 volatility factors derived from the HNG forward curve data  soc: Lacina Grory
in equation (1) has a number of desirable analytical prop-
erties (see Clewlow & Strickland (2000), where we detail References
the analytical pricing of European options on both the spot
asset and futures contracts). For most applications, however, Clewlow L and C Strickland, 2000
Monte Carlo simulation is the numerical technique that the Energy derivatives: pricing and risk management
majority of practitioners turn to. One important real world Lacima Publications
application for a MFMC model is in determining the optimal
location for shipping a cargo, and in the next article of this Clewlow L, C Strickland and Kaminski V, 2001
Masterclass series we will illustrate the use of the MFMC The many shapes of volatility
model for this type of application. EPRM, Risk Publications, April 2001
Les Clewlow and Chiris Strickland are the founders and directors of Lacima
Group, where John Breslin is a principal and Calvin Kwok a quantitative
analyst. Email: info@lacimagroup.com
T1. Covariance matrix for HNG and NBP Brownian motions
NI N2 N3 N4 N5 N6 HI H2 H3 H4 H5 Hé
NI I 0 0 0 0 0 0.13 0.08 -0.01 0.03 0.06 -0.05
N2 0 I 0 0 0 0 0.07 0.04 0.06 0.02 -0.04 0.10
N3 0 0 I 0 0 0 -0.02 -0.02 -0.08 0.05 0.0l -0.04
N4 0 0 0 | 0 0 0.02 0.02 -0.05 -0.04 0.00 -0.17
N5 0 0 0 0 | 0 -0.06 0.04 -0.03 0.04 0.0l -0.06
N6 0 0 0 0 0 \ -0.02 0.0l 0.04 0.08 -0.02 -0.02
HI 0.13 0.07 -0.02 0.02 -0.06 -0.02 I 0 0 0 0 0
H2 0.08 0.04 -0.02 0.02 0.04 0.0l 0 I 0 0 0 0
H3 -0.0l 0.06 -0.08 -0.05 -0.03 0.04 0 0 | 0 0 0
H4 0.03 0.02 0.05 -0.04 0.04 0.08 0 0 0 | 0 0
H5 0.06 -0.04 0.0l 0.00 0.0l -0.02 0 0 0 0 \ 0
Hé -0.05 0.10 -0.04 -0.17 -0.06 -0.02 0 0 0 0 0 I
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