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H In our previous two articles, we discussed the modelling of 
swing contracts based on a single-factor model for describing 
the evolution of gas prices. Single-factor models have a wide 
range of applicability in energy valuation and risk manage-
ment, and are relatively simple to understand and parameter-
ise. However, the simplicity of single-factor models can be a 
double-edged sword. While these models can capture much 
of the dynamics of real life processes in many circumstances, 
by definition they only use a small amount of the potential 
information available from the market. In particular, one major 
drawback of single-factor models is they imply that instanta-
neous changes in forward prices at all maturities are perfectly 
correlated. Increasingly, energy risk practitioners are attracted 
to modelling frameworks that avoid such simplifications. Where 
enough data is available, a more general multi-factor model can 
be used to capture extra information about the price dynam-
ics, and this is the modelling framework that we concentrate on 
here. It is also relatively straightforward to extend such a multi-
factor model to incorporate multiple commodities. This article 
discusses a general multi-factor, multi-commodity (MFMC) 
model and describes the process of estimating parameters from 
historical data.1 In our next Masterclass article we will use this 
underlying model in a practical application that involves the 
simulation of multiple energy forward curves. 

Figure 1 illustrates the historical evolution of a forward curve 
for Henry Hub natural gas (HNG) from January 2, 2007 to 
December 14, 2007. For clarity not all available curves in this 
period are shown. Each forward curve consists of 24 data points 
representing the next 24 monthly maturities; that is, on each 
calendar date we plot the nearby contract, the second nearby 
and so on, out to the 24th nearby contract. The first few curves 
in January 2008 therefore contain forward prices for contracts 

maturing each month from February 2007 to January 2009, 
while the last curves in December 2007 contain prices for 
contracts maturing from January 2007 to December 2009.

One important observation from figure 1 is that forward 
prices of different maturities are not perfectly correlated – the 
curves generally move up and down together, with the short 
end of the curve exhibiting more volatility than the long end, 
but they also change shape in apparently quite complex ways. 
In order to capture this complex interaction of different points 
along the forward curve we need more than a single factor of 
uncertainty.

A general multi-factor model of the forward curve, which 
can be represented by the following stochastic differential 
equation (SDE);

	

dF(t, T )
F(t, T )

= σi (t, T )dzi (t)
i=1

n

∑
	

(1)

In this formulation F(t,T) denotes a forward price for delivery 
at time T (the maturity date) recorded on date t, and there are n 
independent sources of uncertainty that drive the evolution of 
the forward curve. Each source of uncertainty dzi(t) has associ-
ated with it a volatility function σi(t,T), which determines by 
how much, and in which direction, that random shock moves 
each point of the forward curve. Note that it is possible to write 
an equation for the dynamics of the spot price that is consistent 
with the forward price dynamics – this is important in under-
standing how forward curve and spot dynamics are related, and 
explains the link between many popular implementations of 
equation (1) and some well known spot price models. We can 
integrate equation (1), set the maturity date equal to the current 
date (that is, T = t), and apply a further differentiation, leading 
to the following SDE describing the evolution for the spot 
price, where F(t,t) = S(t) defines the spot price: 
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The term in square brackets, which defines the drift of the 
spot process, involves the integration over the Brownian 
motions, and hence the spot price process will, in general, 
be non-Markovian. That is, it will depend on all the random 
shocks that have occurred since the start of the evolution 
at time zero. As a side note, for many energies such as the 
natural gas and electricity markets, seasonality in the forward 
price volatilities is an important feature in the evolution of 
the forward curve. One way to deal with this seasonality is 
to estimate volatility functions for each ‘season’, where the 
season can be defined by the user to segregate the data to 
represent for example ‘summer/winter’ or ‘summer/autumn/
winter/spring’. A more elegant approach is to extend equation 
(1) to incorporate seasonality in the volatility functions by 
representing the functions as the product of a time-dependent 
spot volatility function and maturity-dependent volatility 
functions. The general equation (1) therefore becomes:

	

dF t, T( )
F t, T( ) = σS t( ) σi T − t( )dzi t( )

i=1

n

∑
	

(3)

where σS(t) denotes the spot price volatility at time t and 
σi(T– t) the n maturity-dependent volatility functions. In 
this way, the maturity structure of the volatility functions 
is normalised by the spot volatility and the volatility func-
tions then capture the correlation between forward prices 
at different maturities independently of any seasonal effects. 
For clarity in this article we have chosen not to model the 
seasonality in this way, but it is a straightforward extension 
of the analysis that we present.

Perhaps the main advantage of this forward curve model-
ling approach is the flexibility that the user has in choosing 
both the number and form of the volatility functions. The 
volatility functions can be determined in one of two general 
ways: historically, from time series analysis; or implied from 
the market prices of options. In this article we use the former 
method to illustrate estimation of the volatility functions.

Using historical forward curve data, one method that can 
be used to simultaneously determine both the number and 
form of the volatility functions that drive the dynamics 
of the forward curve is principal components analysis 
(PCA) or eigenvector decomposition of the covariance 

matrix of the forward prices returns. The technique involves 
calculating the sample covariances between pairs of forward 
price returns in a historical time series to form a covari-
ance matrix. The eigenvectors of the covariance matrix yield 
estimates of the factors driving the evolution of the forward 
curve.

To illustrate the process of estimating the volatility func-
tions from historical data we consider a single commodity 
with n factors2. After applying Ito’s lemma to equation (1) the 
forward curve dynamics is written as:

	

∆ ln F t, t + τ j( ) =

− 1
2 σi t, t + τ j( )2

∆t +
i=1

n

∑ σi t, t + τ j( )∆zi
i=1

n

∑
	

(4)

Equation (4) implies that changes in the natural logarithms of 
the forward prices with relative maturities τj, j=1,...,m are jointly 
normally distributed. An annualised sample covariance matrix 
of these forward prices (Σ) can be computed and decomposed 
into a series of eigenvectors and eigenvalues such that;

	
Σ = ΓΛΓT

	
(5)

where 

	

Γ =

v11 v12 ... v1n

v21 v22 ... v2n

... ... ... ...
vn1 vn2 ... vnn

and Λ =

λ1 0 0 0
0 λ2 0 0
0 0 ... 0
0 0 0 λn 	

(6)
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F1. Forward curve for Henry Hub natural gas during 2007
Source: Lacima Group

2. See Clewlow and Strickland (2000) for a detailed example of how to estimate vola-
tility functions in this way.
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The columns of Γ are the eigenvectors. The eigenvalues 
represent the variances of the independent ‘factors’ that drive 
the forward points in proportions determined by the eigen-
vectors. The discrete volatility functions are then obtained as

	
σi (t, t + τ j ) = vji λi 	

(7)

As an illustration of the outputs from this analysis in figure 
2 we show plots of the seasonal covariance matrices for 
HNG forward curve data. For convenience we have defined 
the seasons to cover January to March, April to June, July 
to September, and October to December, but the user can 
categorise the seasons by their own definitions. Note that in 
order to obtain robust estimates we have used a longer history 
of forward curves (from January 2005 to December 2007) and 
we have used the first 50 maturities.

 The covariance surfaces illustrated in figure 2 are typical 
of those found in energy markets. As you would expect, 
the largest covariance is observed between price move-

ments at the short end of the forward curve. The surface will 
then typically decay to a lower value for the longer-dated 
contracts. The smoothness of the surfaces will depend on the 
amount of ‘noise’ in the market, which may be due to illi-
quidity in contracts beyond a certain maturity, or changes in 
the market dynamics.

Once the covariance matrices have been calculated, the form 
of the volatility functions in equation (1) can be obtained as 
described above. In figure 3 we plot the first three volatility 
functions for season 1 (the results for the other seasons are 
very similar).

The results shown in figure 3 are typical of those found 
when analysing energy market data. The first factor is positive 
for all maturities, indicating that a shock to the system will 
result in prices at all maturities to ‘shift’ in the same direction. 
This is generally the most significant factor and is similar to 
the effect that would be seen in a single-factor model. The 
second factor is a ‘tilt’ that causes the short and long maturity 
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F2. Covariance matrices for the Henry Hub natural gas forward curves for each season    Source: Lacima Group
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contracts to move in opposite directions. 
The third factor is a ‘bending’ factor, 
where the short and long ends of the 
curve move in the opposite direction to 
the middle of the curve. The second and 
third factors (and potentially others) are 
what distinguishes this approach from 
a single-factor model, and allows the 
realistic dynamics of the forward curve to 
be captured in the model.

As we are dealing with 50 contracts in 
this example, there are 50 factors that can 
explain the variance of the evolution of 
the curve; however, only a few of these 
will be significant for explaining the vari-
ation in the forward curve. The eigen-
values obtained in the previous step (see equation (6)) indicate 
the importance of the corresponding eigenvectors (volatility 
functions). In practice we find that two or three factors are 
usually sufficient to explain the evolution of the observed 
market data. For this example the eigenvalues for the 50 
factors are shown in figure 4. 

Clearly the first few factors have the largest contribution 
towards explaining the dynamics of the forward price. In fact 
for this example the first three factors explain 99.98% of the 
movement in the prices, so for modelling purposes it is easy to 
justify using only three factors to model the evolution of the 
forward price.

Many of the problems faced by practitioners in the energy 
risk management arena require the joint modelling of multiple 
commodities. Spreads between one or more fuels and a power 
price, for example, are key determinants in the valuation of 
power plants and many derivative contracts. Efficient calcula-
tion of at-risk measures, such as value-at-risk, or cashflow-
at-risk type measures can be achieved by the simultaneous 
joint evolution of all risk factors that underlie the contracts or 
assets that form the portfolio. The multi-factor model in (1) 
can be generalised further to describe the joint forward curve 
dynamics of multiple commodities as:

	

dFc t, T( )
Fc t, T( ) = σc, i t, T( )dzc, i t( )

i=1

nc

∑
	

(8)

where 
c = 1,…,m represents each different commodity from the 
historical data and i = 1,…,nc indexes the volatility functions 
for each commodity.

In this model the correlations between commodities are 
defined by a correlation matrix for the Brownian motions. 
The correlations between the Brownian motions driving 
a particular commodity are zero, while the correlations 
between the Brownian motions driving different commodities 
represent the inter-commodity correlations.

As with the case of estimating volatility functions, we can 

estimate the inter-commodity correlations from the joint 
historical forward curve data. For each commodity, equation 
(4) describes the discrete time evolution of the forward curve 
in terms of the estimated volatility functions. 

This can be expressed in the following matrix representation:

	  

x t( ) = µ t( ) + %Σ.ε
	

(9)

where
–x(t) is the vector of changes in the natural logarithms of the 
forward prices for each maturity at the specified timestep;
–µ(t) is the vector of drift terms over the time step;
∑
∼  is the matrix of discrete volatility function terms;
ε– is the unknown vector of standard normally distributed 
random shocks.

Equation (9) can be solved to give estimates of the historical 
Brownian shocks that generated the evolution of the forward 
prices. We repeat this process for each commodity to obtain 
a time series of vectors ε– for each commodity. The sample 
correlation matrix of the random shocks can then be calcu-
lated to give the inter-commodity correlations for use in a 
multi-commodity simulation.

As an example we consider the correlation between the 
HNG forward prices used above, and NBP natural gas 
forward prices covering the same period. The resulting 
covariance matrix is shown in table 1.

For this example we have considered six volatility factors 
for each commodity. The headers in table 1 and the hori-
zontal axes label the volatility factors: the factors for NBP are 
denoted by N1, N2, …, N6, and for HNG they are denoted 
by H1, H2, …, H6. As noted above, the covariance between 
the Brownian motions of each commodity are zero, while 
the non-zero covariances in the off-diagonal blocks repre-
sent the correlations between the Brownian motions driving 
the different commodities. Also, the correlations between the 
Brownian motions are used as input to a simulation model 
based on equation (8) to generate appropriately correlated 
normally distributed random shocks.

For single-commodity applications the model described 
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F3. Plot of the first three volatility functions for the HNG data for season 1     
Source: Lacima Group
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in equation (1) has a number of desirable analytical prop-
erties (see Clewlow & Strickland (2000), where we detail 
the analytical pricing of European options on both the spot 
asset and futures contracts). For most applications, however, 
Monte Carlo simulation is the numerical technique that the 
majority of practitioners turn to. One important real world 
application for a MFMC model is in determining the optimal 
location for shipping a cargo, and in the next article of this 
Masterclass series we will illustrate the use of the MFMC 
model for this type of application. 
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  T1. Covariance matrix for HNG and NBP Brownian motions

  N1 N2 N3 N4 N5 N6 H1 H2 H3 H4 H5 H6

N1 1 0 0 0 0 0 0.13 0.08 –0.01 0.03 0.06 –0.05

N2 0 1 0 0 0 0 0.07 0.04 0.06 0.02 –0.04 0.10

N3 0 0 1 0 0 0 –0.02 –0.02 –0.08 0.05 0.01 –0.04

N4 0 0 0 1 0 0 0.02 0.02 –0.05 –0.04 0.00 –0.17

N5 0 0 0 0 1 0 –0.06 0.04 –0.03 0.04 0.01 –0.06

N6 0 0 0 0 0 1 –0.02 0.01 0.04 0.08 –0.02 –0.02

H1 0.13 0.07 –0.02 0.02 –0.06 –0.02 1 0 0 0 0 0

H2 0.08 0.04 –0.02 0.02 0.04 0.01 0 1 0 0 0 0

H3 –0.01 0.06 –0.08 –0.05 –0.03 0.04 0 0 1 0 0 0

H4 0.03 0.02 0.05 –0.04 0.04 0.08 0 0 0 1 0 0

H5 0.06 –0.04 0.01 0.00 0.01 –0.02 0 0 0 0 1 0

H6 –0.05 0.10 –0.04 –0.17 –0.06 –0.02 0 0 0 0 0 1
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